Lect. 23: PLL Dynamics

PLL Block Diagram

\[V_{in} = \sin(\omega_{in}t) \]

Phase Detector \[V_{PD} \]

Low Pass Filter \[V_C \]

Voltage Controlled Oscillator \[V_{out} = \sin(\omega_{out}t + \theta) \]

Linear Model

\[\phi_{in} \]

\[\sum \]

\[K_{PD} \]

\[V_{PD} \]

\[\frac{\omega_p}{s + \omega_p} \]

\[V_C \]

\[K_{VCO} \]

\[\frac{\omega_{out}}{s} \]

\[\phi_{out} \]

\[K_{PD}K_{VCO} \frac{\omega_p}{s(s + \omega_p)} \]

\[\phi_{in} \]

\[\sum \]

\[\phi_{out} \]
Lect. 23: PLL Dynamics

Open loop gain:

$$G(s) = K_{PD}K_{VCO} \frac{\omega_p}{s(s + \omega_p)}$$

Closed loop gain

$$H(s) = \frac{\phi_{out}}{\phi_{in}} = \frac{G(s)}{1 + G(s)} = \frac{K_{PD}K_{VCO} \frac{\omega_p}{s(s + \omega_p)}}{1 + K_{PD}K_{VCO} \frac{\omega_p}{s(s + \omega_p)}} = \frac{K_{PD}K_{VCO} \omega_p}{s^2 + \omega_p s + K_{PD}K_{VCO} \omega_p}$$

⇒ 2nd order LPF!
Lect. 23: PLL Dynamics

\[H(s) = \frac{\phi_{out}}{\phi_{out}} = \frac{K_{PD}K_{VCO}\omega_p}{s^2 + \omega_p s + K_{PD}K_{VCO}\omega_p} \]

\[|H(s)| = \left| \frac{\phi_{out}}{\phi_{in}} \right| \]

Note that input and output are ‘phase’.

What does \(\omega \) mean in x-axis?
In LPF,

\[|H(s)| = \left| \frac{V_{out}}{V_{in}} \right| \]
In PLL,

\[|H(s)| = \left| \frac{\phi_{out}}{\phi_{in}} \right| \]
Lect. 23: PLL Dynamics

\[H(s) = \frac{\phi_{out}}{\phi_{in}} = \frac{K_{PD}K_{VCO}\omega_p}{s^2 + \omega_p s + K_{PD}K_{VCO}\omega_p} \]

2nd order system \hspace{1cm} \[H(s) = \frac{a_2 s^2 + a_1 s + a_0}{s^2 + (\omega_0 / Q)s + \omega_0^2} \]

\[\omega_0 = \sqrt{\omega_p K_{PD} K_{VCO}} \] Use \(\omega_n \), natural frequency \((\omega_n = \omega_0)\)

\[Q = \sqrt{\frac{K_{PD}K_{VCO}}{\omega_p}} \] Use damping factor \(\zeta = \frac{1}{2Q} = \sqrt{\frac{\omega_p}{K_{PD}K_{VCO}}} \)

\[H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

\[\frac{\omega_{out}}{\omega_{in}} = \frac{s\phi_{out}}{s\phi_{in}} = \frac{\phi_{out}}{\phi_{in}} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]
Damping factor dependence

\[H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

\[\omega_n = 2\pi \]

\(\xi = 0.1 \)
\(\xi = 0.3 \)
\(\xi = 0.7 \)
\(\xi = 1 \)
\(\xi = 1.5 \)
Lect. 23: PLL Dynamics

Natural frequency dependence

\[H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

\[\xi = 1 \]

\[\omega_n = 2\pi \times 1 \]
\[\omega_n = 2\pi \times 2 \]
\[\omega_n = 2\pi \times 3 \]
\[\omega_n = 2\pi \times 4 \]
\[\omega_n = 2\pi \times 5 \]
Lect. 23: PLL Dynamics

Step response

\[\omega_{in}(t) = \Delta \omega \cdot u(t) \]

\[\omega_{out}(t) = \left\{ 1 - e^{-\zeta \omega_n t} \left[\cos(\omega_n \sqrt{1-\zeta^2} \cdot t) + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin(\omega_n \sqrt{1-\zeta^2} \cdot t) \right] \right\} \Delta \omega \cdot u(t) \]
Lect. 23: PLL Dynamics

Damping factor dependence: step response

\[H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

\(\omega_n = 2\pi \)

- \(\xi = 0.1 \)
- \(\xi = 0.3 \)
- \(\xi = 0.7 \)
- \(\xi = 1 \)
- \(\xi = 1.5 \)
Lect. 23: PLL Dynamics

Natural frequency dependence: Step Response

\[H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]

\[\xi = 1 \]

\[\omega_n = 2\pi \times 1 \]
\[\omega_n = 2\pi \times 2 \]
\[\omega_n = 2\pi \times 3 \]
\[\omega_n = 2\pi \times 4 \]
\[\omega_n = 2\pi \times 5 \]