Lect. 24: Charge-Pump PLL

Limitations of PLL using PD

-Narrow locking range

It can be shown PLL locking range is roughly on the order of ω_p

Simulation setup: $f_{in} = 1\text{Hz}$, $K_{PD} = 5V/\text{rad}$, $K_{VCO} = 2\pi \times 0.01\text{rad}/s/V$, and $f_p = 0.032\text{Hz}$

$\Delta f_{in} = 0.01\text{Hz}$ (Locked)

$\omega_{in} = 0.05\text{Hz}$ (Lock failed)

Phase detection alone cannot provide sufficient PLL locking range
Lect. 24: Charge-Pump PLL

Limitations of PLL using PD:

- Limitation is due to narrow linear phase detection range
Lect. 24: Charge-Pump PLL

Wider phase detection range?

D Flip-flop: Q becomes D at the rising clock edge

⇒ Phase and Frequency Detector (PFD)
Lect. 24: Charge-Pump PLL

Subtraction and integration

Voltage mode using OP amplifiers

Current mode using charge pump

Subtraction

Integration

Electronic Circuits 2 (09/1) W.-Y. Choi
Lect. 24: Charge-Pump PLL

Charge Pump PLL

Linear Model

Electronic Circuits 2 (09/1)

W.-Y. Choi
Lect. 24: Charge-Pump PLL

Open loop gain:

\[
G(s) = \frac{1}{2\pi} I_{CP} K_{VCO} \frac{1}{s^2 C_1}
\]

No phase margin \(\Rightarrow\) Unstable
Lect. 24: Charge-Pump PLL

Open loop gain:

\[G(s) = \frac{1}{2\pi I_{CP} K_{VCO}} \frac{sRC_1 + 1}{s^2 C_1} \]

Large ripple during transient
Lect. 24: Charge-Pump PLL

Charge Pump PLL

- Ripple reduction with small $C_2 \approx C_1/10$
- Simplification as 2nd-order system

Open loop gain:

$$G(s) \sim \frac{1}{2\pi} I_{CP} K_{VCO} \frac{sRC_1 + 1}{s^2 C_1}$$
Lect. 24: Charge-Pump PLL

Closed loop transfer function

\[
H(s) = \frac{\frac{I_{CP}}{2\pi C_1} K_{VCO} (RC_1 s + 1)}{s^2 + \frac{I_{CP}}{2\pi} K_{VCO} R s + \frac{I_{CP}}{2\pi C_1} K_{VCO}}
\]

Natural frequency

\[\omega_n = \sqrt{\frac{I_{CP} K_{VCO}}{2\pi C_1}}\]

Damping ratio

\[\zeta = \frac{R}{2} \sqrt{\frac{I_{CP} C_1 K_{VCO}}{2\pi}}\]
Lect. 24: Charge-Pump PLL

Transient simulation for various damping ratio and fixed ω_n

$f_{in} = 200\text{Hz}$
$I_{CP} = 100\mu\text{A}$
$K_{VCO} = 2\pi \times 100 \text{rad/s/V}$
$f_n = 1\text{Hz}$
Lect. 24: Charge-Pump PLL

Transient simulation for various ω_n and fixed damping ratio

$$f_{in} = 200\, \text{Hz}$$
$$I_{CP} = 100\, \mu\text{A}$$
$$K_{VCO} = 2\pi \times 100\, \text{rad/s/V}$$
$$\zeta = 0.7$$

\Rightarrow Optimization for desired performance!

![Graph showing transient response with different ω_n values]