High Frequency Devices and Circuits

Jae-Sung Rieh

School of Electrical Engineering Korea University

1

Outline

- High Frequency Applications
- High Frequency Semiconductor Devices
- High Frequency Semiconductor Circuits

Various Application of RF and mm-wave

Definition of mm-wave

60 GHz Applications

- WPAN (Wireless Personal Area Network)
 - Gigabit rate wireless communication

Streaming HD Video (Uncompressed) 1080i > 1.5 Gb/s 1080p > 3 Gb/s

"Point-and-shoot" file transfer 1-3 Gb/s burst data 1-3 m range

Personal Area Network Streaming video + file transfer

Available Frequency Bands

Available frequency band for WPAN in various regions

Channel Plan

- IEEE 802.15.3c standard channel plan
 - Full rate (2 GHz)

doc. IEEE 802.15-07-0934-01-003c

77 GHz Applications

- Automotive radar
 - Long range radar (LRR)
 - For ACC (Adaptive Cruise Control)
 - Operating at 77 GHz
 - Short range radar (SRR)
 - For collision warning, stop-and-go function, parking aid, blind spot monitoring, lane change assistance, rear crash collision warning
 - Currently dominated by 24 GHz operation
 - Planned to shift to 79 GHz (mandatory from July 2013 in EU)
 - A typical radar system is composed of 1 LRR and several SRR's

Principles of FMCW

When the object is stationary (relative speed zero)

When the object is moving (relative speed non-zero)

94 GHz Applications

- Imaging system at 94 GHz
 - Anti-terrorist security systems
 - Aviation safety systems
 - Atmospheric sensing systems

Runway image at foggy weather

Security imaging system

mm-wave Propagation in Atmosphere

Applications beyond 100 GHz

Spectroscopy

Sakai et al, 2005

Imaging

Broadband Communication

Atmospheric/Space

Bio/Medical

Skin cancer

Outline

- High Frequency Applications
- High Frequency Semiconductor Devices
- High Frequency Semiconductor Circuits

High Frequency Semiconductor Devices

- III-V devices (GaAs or InP based)
 - HBT (heterojunction bipolar transistor)
 - HEMT (high electron mobility transistor)
- Si-based devices
 - SiGe HBT
 - RFCMOS

Device Operation Speed Trend

Device Comparison: III-V vs Si (I)

- Advantage of III-V
 - Superior electron transport characteristic
 - High low field mobility for relaxed dimension
 - High ballistic velocity for aggressively scaled dimension

 \rightarrow High operation frequency

 \rightarrow High gain and low noise for a given operation frequency

- High substrate resistance
 - Resistivity 10⁷ 10⁹ ohm-cm (compared with ~10 ohm-cm for Si)
 - \rightarrow Low loss for transmission lines, high-Q for inductors
- High breakdown voltage
 - Breakdown voltage increases with wider bandgap E_q
 - Si: 1.12 eV, GaAs: 1.42 eV, InP: 1.27 eV, GaN: 3.44 eV

 \rightarrow High power performance

Device Comparison: III-V vs Si (II)

- Advantage of Si
 - Compatibility with baseband circuits (digital circuits)
 - Based on highly developed fabrication infrastructure
 - Higher reliability
 - Excellent interface/surface properties, low defect density, and low thermal resistivity
 - Lower cost
 - Larger wafer dimension, lower wafer cost
 - No need for costly epitaxial processes, e-beam litho
 - But, expensive mask sets leads to high cost for low volume

SiGe HBT vs Si CMOS

- Advantage of SiGe HBT
 - Higher device operation frequency of commercially available devices
 - Higher transconductance g_m
 - Superior low frequency noise (1/f noise)
 - Vertical path of current inside the device
 - → Smaller lateral dimension fluctuation
 - → Smaller device performance variation
 - No need for the expensive phase shift mask for acceptable operation frequency

Advantage of Si CMOS

- Fully compatible with baseband circuits (digital circuits)
 - → High level integration such SoC very feasible
 - → Device model can be obtained by a simple modification of digital CMOS model
- Less complex fabrication process
- Low cost for high volume (such that the cost of phase shift mask becomes less significant)

Properties of SiGe HBTs

Quasi E-field in the base (30~50 kV/cm)

- Base transit time reduction \rightarrow speed enhancement

Increased n_i in the base

- Increased Ic \rightarrow current gain enhancement
- \rightarrow allow high base doping \rightarrow low R_B/ low NF_{min} or W_B reduction

SiGe HBT Structure Schematic

SEM Image of Fabricated SiGe HBT

SiGe HBT Record Performance

- ST Microelectronics
- 0.13 um SiGe HBT
- $C_B E^B C$ layout: Peak $f_T / f_{max} = 410/150 \text{ GHz}$
- CBEBC layout: Peak $f_T / f_{max} = 340/260 \text{ GHz}$

Geynet et al BCTM 2008

MOSFET scaling down (Intel)

Layout of RF MOSFET

Digital MOSFET

RF MOSFET

RFCMOS Record Performance

- NFET: 45 nm SOI (L_{poly}=29 nm)
- Peak $f_T = 485 \text{ GHz}$

- PFET: 45 nm SOI (L_{poly}=31 nm)
- Peak $f_T = 345 \text{ GHz}$

A: Relaxed poly pitch, B: Minimum poly pitch

Lee et al IEDM 2007

III-V HEMT Overview

- Employs modulation-doped structure
 - Channel is undoped and the carriers are provided from the barrier layer
 - Coulomb scattering is greatly reduced and the mobility if increased
 - \rightarrow 'high electron mobility' is achieved \rightarrow 'HEMT'

Structure of typical III-V HEMT

Band diagram of typical III-V HEMT

Pseudomorphic HEMT (PHEMT)

- Lattice mismatched strained pseudomorphic channel layer
 - Channel with smaller bandgap possible
 - → Improved carrier confinement and improved carrier transport

Metamorphic HEMT (MHEMT)

- Strain relaxed metamorphic buffer on GaAs
 - Layers with wide range of lattice constant can be grown on low cost GaAs substrate
 - → High performance HEMT based on GaAs wafer possible

III-V HEMT Record Performance

- MIT
- 30 50 nm gate length InP HEMT
- $L_g = 30 \text{ nm}$: Peak $f_T / f_{max} = 628/331 \text{ GHz}$
- $L_g = 50 \text{ nm}$: Peak $f_T / f_{max} = 557/718 \text{ GHz}$

Kim et al EDL 2008

III-V HBT Overview

- Employs emitter with larger bandgap than base bandgap
 - Base doping can be increased
 - Bases resistance reduced \rightarrow f_{max} and F_{min} improved
 - Thin gate can be employed \rightarrow base transit time reduced

Structure of typical III-V HBT

Band diagram of typical III-V HBT

III-V HBT Record Performance

- UIUC •
- Peak $f_T = 765$ GHz at 25C
- Peak $f_T = 845$ GHz at -55C

A_F = 0.32 x 6 μm²

 $I_{\rm B} = 30 \ \mu A / step$

1000

100

10

0.5

CBCx

V_{CF} [V]

1

III-V HBT Performance Issues

- Issues with increasing operation frequency
 - Reduction in breakdown voltage → Limits safe operation region
 - Increase in collector current density \rightarrow Influences reliability

Snodgrass et al IEDM 2006

Inductors

- RF applications
 - RF decoupling
 - Matching networks
 - Feedback inductors
 - LC tank for oscillators
 - Filters
 - Transformers
- Features of interest
 - Inductance (density)
 - Quality factor
 - Self resonance frequency (SRF)

$$Q = \frac{\omega L}{R_s} = -\frac{\operatorname{Im}(Y_{11})}{\operatorname{Re}(Y_{11})} = \frac{\operatorname{Im}(1/Y_{11})}{\operatorname{Re}(1/Y_{11})}$$
$$L = -\frac{\operatorname{Im}(1/Y_{11})}{\omega}$$

Inductors Types

- Spiral inductors
- Solenoid inductors
- Line inductors

Spiral inductor

Line inductor

Solenoid inductor

Yoon et al EDL1999 p487

Capacitors (I)

- RF applications
 - Bias networks
 - DC decoupling
 - Matching networks
 - Filters
- Features of interest
 - Capacitance (density)
 - Voltage capability
 - Quality factor
 - Voltage coefficient

$$Q = \frac{1}{\omega CR_s} = \frac{\operatorname{Im}(Y_{11})}{\operatorname{Re}(Y_{11})} = -\frac{\operatorname{Im}(1/Y_{11})}{\operatorname{Re}(1/Y_{11})}$$
$$C = -\frac{1}{\omega \operatorname{Im}(1/Y_{11})}$$

- Thermal coefficient
- Thermal stability
- Parasitic capacitance
- N+ dopant influence on oxide

Capacitors (II)

- Device types
 - Interdigitated capacitors
 - MOS capacitors
 - Poly-poly capacitors
 - MIM capacitors
 - Various dielectric materials
 - Vertical natural capacitor (VNCAP)
 - 3D interdigitated cap

VNCAP (Chen et al 2005 IRPS)

Transmission Lines (I)

- Transmission lines
 - Inherently scalable \rightarrow one model can be used for various lengths
 - No need to consider the parasitics from interconnection lines
 - Cleary defined ground return path \rightarrow minimized effect on neighbors
- CPW lines
 - Planar process
 - Subject to high loss when implemented on Si substrate
- Microstrip lines
 - Complex process if backside ground plane employed
 - Provide shield against lossy substrate if M1 used for ground plane

CPW line

Microstrip line

Transmission Lines (II)

- Guided microstrip lines (= Conductor-Backed CPW (CBCPW))
 - Improved loss compared to CPW
 - Improved isolation between parallel lines compared to microstrip

Komijani et al JSSC2006 p.1749

Outline

- High Frequency Applications
- High Frequency Semiconductor Devices
- High Frequency Semiconductor Circuits

Typical Heterodyne Receiver

Receiver (RX)

• Transmitter (TX)

Issues for mm-wave LNA Design

- Gain
 - Limited operation speed of transistors at mm-wave range
 - \rightarrow Low transconductance and thus gain
- Noise
 - RF noise dominated by transconductance
 - \rightarrow Low transconductance results in poor NF
- Linearity
 - There is trade-off between linearity and gain
 - Efforts to improve conversion gain degrades linearity
- DC power dissipation
 - Bias current increased for high gain
 - \rightarrow DC power dissipation increased

Topology Comparison

- Common Source (Common Emitter)
 - Acceptable power gain
 - Low noise
- Common Gate (Common Base)
 - Acceptable power gain
 - Broadband input impedance match
- Cascode
 - High power gain
 - High noise
 - Better stability (possible to make it unconditionally stable) than CS
 - Better reverse isolation (smaller S12) than CS

58 GHz LNA by U of Toronto (I)

- Basic structure
 - TSMC 90 nm CMOS
 - 2-stage single-ended cascode
 - fT/fmax = 120/200 GHz
- Performance (at 60 GHz)
 - Gain: 14.6 dB
 - NF: 5.5 dB
 - P_{DC}: 24 mW (V_{DD} = 1.5 V)
 - IIP3 = -6.8 dBm
- Notable feature
 - Heavy use of inductors

Q3 Q4

G

Q1

G

Q2

60 GHz LNA by UC Berkeley (I)

- Basic structure
 - STM 90 nm CMOS
 - 2-stage single-ended CS
 - fmax = 300 GHz
- Performance
 - Gain: 12.2 dB
 - NF: 6 dB (simulated)
 - P_{DC}: 10.5 mW (V_{DD} = 1 V)
 - P_{-1dB} : +4 dBm
- Notable features
 - Round table layout for CMOS
 - CPW matching

B. Heydari, ISSCC 2007 p.200, JSSC 2007 p.2893

60 GHz LNA by UC Berkeley (II)

B. Heydari, ISSCC 2007 p.200, JSSC 2007 p.2893

Issues for mm-wave VCO Design

- Phase noise
 - Low Q-factor of LC tank
 - \rightarrow Dominated by the low varactor Q-factor
- Tuning range
 - Capacitance from varactors only a fraction of total capacitance of LC tank
- DC power dissipation
 - Enough g_m required for start-up condition
 - Large bias current required for sufficient g_m
- RF output power
 - Limited by V_{DD} for sufficient tail current
 - \rightarrow Trade-off with DC power dissipation
 - Buffer gain limited by active device g_m

Topologies for VCOs

- LC cross-coupled oscillator
 - Relatively easy oscillation start-up condition
 - Lower DC power dissipation
- Colpitts oscillator
 - Better phase noise
 - Large output power
 - Less influence from buffer stage
- Ring oscillator
 - Limited phase noise
 - Limited speed

51 GHz VCO by Infineon (I)

- Basic structure
 - 0.12 um CMOS
 - fT/fmax = 100/60 GHz
 - LC cross-coupled, fundamental
- Performance
 - $f_o = 50.2 51.6 \text{ GHz}$
 - PN = -85 dBc/Hz at 1 MHz offset
 - P_{DC} (Core)= 1 mW (V_{DD} = 1 V)
 - P_{DC} (Buffer)= 8.25 mW (V_{DD} = 1.5 V)
 - P_{out} = -15 dBm
- Notable features
 - Center-tap inductor
 - Reduced area and substrate capacitance
 - Tapered inductor
 - 20% increase in metal line width for each outward turn

51 GHz VCO by Infineon (II)

M. Tiebout, ISSCC 2002 p.300

Issues for mm-wave Mixer Design

- Conversion gain
 - Limited operation speed of transistors at mm-wave range
 - \rightarrow Low transconductance and thus conversion gain
- Noise
 - RF noise dominated by transconductance
 - \rightarrow Low transconductance results in poor NF
- Linearity
 - There is trade-off between linearity and conversion gain
 - Efforts to improve conversion gain degrades linearity
- DC power dissipation
 - Bias current increased for high conversion gain
 - \rightarrow DC power dissipation increased

Topologies for Mixers (I)

- Single-balanced
 - One input port is balanced, the other is single-ended
 - Compatible with single-ended LNA
 - Compact size and relaxed voltage budget

- Double-balanced
 - Both input ports are balanced
 - Excellent immunity to even-mode noise
 - Less LO-IF feedthrough

Topologies for Mixers (II)

- Mixer with hybrid coupler
 - Based on nonlinearity of FET devices
 - LO, RF signals are injected through a hybrid coupler
 - Single-ended LO, RF input, differential IF output

- Resistive mixer
 - Based on a unbiased FET (passive mode operation)
 - LO, RF, and IF applied to electrodes of TR (many options possible)
 - FET operates at triode region
 - Shows very high linearity

S. Maas, TMTT 1987, p. 425

77 GHz Mixer by TUV (I)

VEE •

LO balun

- Basic structure
 - Infineon 200 GHz SiGe HBT
 - Double-balanced active
- Performance
 - Conv. Gain > 24 dB
 - SSB NF < 14 dB</p>
 - P_{DC}: 300 mW (V_{CC} = 5 V)
 - P_{-1dB} : -4 dBm
- Notable features
 - LO TR size optimized for best fT
 - RF TR size optimized for best NF
 - On-chip LPF before IF buffer for improved isolation

TRL₂

LC Balun for RF input

Fig. 6. Measured conversion gain and SSB noise figure versus LO frequency. IF frequency is 500 MHz, LO power is 2 dBm.

Fig. 7. Measured IF output power versus RF input power. LO frequency is 78.5 GHz, RF frequency is 79 GHz, IF frequency is 500 MHz, LO power is 2 dBm.

W. Perndl, RFIC 2004 p.47

Fig. 8. Measured conversion gain and SSB noise figure versus LO power. IF frequency is 500 MHz, LO frequency is 78.5 GHz.

Integrated 60 GHz RX – SiBeam (I)

- STM 0.13 um CMOS ٠
- Heterodyne configuration
- RF = 60 GHz•
- LO = 58 GHz•
- IF = 2 GHz•

LNA

Frequency doubler

Mixer

Emami et al ISSCC 2007

Multiplier core

56

Integrated 60 GHz RX – SiBeam (II)

10.4 dB
11.8 dB
-15 dBm
-86 dBc/Hz
77 mW
1.2 V

Integrated 60 GHz RX – SiBeam (III)

550 GHz InP HEMT Amplifier

- Northrop Grumman Company
- 50nm NGC InP HEMT
- f_{max} ~ 1.2 THz (estimated)
- 3 stage
- Gain = 10 dB at 550 GHz (~15 dB for intrinsic amplifier)
- Integrated dipole probes

346 GHz InP HBT Fundamental Oscillator

Teledyne

•

Frequency tuning around 267, 289, 310, 346 GHz

Output power = -11 dBm at 346 GHz

256 nm Teledyne InP HBT

DC power = 35 mW

Seo et al, IMS 2010

215 GHz MHEMT Active Mixer

- Fraunhofer Institute
- 0.1 um GaAs MHEMT
- Conversion gain = ~2.8 dB at 215 GHz
- LO-RF isolation = 18.3 dB

Kallfass et al, MWCL 2008