Design For Testability

2011.06.03

Sungho Kang

Agenda

- Introduction
- Test Methodology
- Design for Testability
- IEEE P1500
- Case Study
- Conclusion

SOC Design

DFT for SOC

Manufacturing Defects

In fabrication, defects get introduced from many sources:

- Contamination
- Metalization Defect
- Implant Defect
- Wafer Defect
- Oxide Defect
- Interconnect Defect

poly wires

Verification vs Test

Verification

- Correctness of design
- > Simulation, Emulation and Formal verification
- Performed once before manufacturing
- Responsible for quality of design

Test

- Correctness of manufactured hardware
- > Test generation and test application
- > Performed every manufactured devices
- Responsible for quality of devices

Introduction

Design-for-Testability (DFT)

Definition

- Any design effort to reduce test costs
- The process of including special features to make a device easily testable

Objective

To reduce in overall design cycle times and test costs without sacrificing the quality of the product

Ad-Hoc DFT Methods

- Good design practices learnt through experience are used as guidelines:
 - ✓ Avoid asynchronous (unclocked) feedback.
 - ✓ Make flip-flops initializable.
 - ✓ Avoid redundant gates. Avoid large fanin gates.
 - ✓ Provide test control for difficult-to-control signals.
 - ✓ Avoid gated clocks.
 - ✓ Consider ATE requirements (tristates, etc.)
- Design reviews conducted by experts or design auditing tools.

Disadvantages of ad-hoc DFT methods:

- ✓ Experts and tools not always available.
- Test generation is often manual with no guarantee of high fault coverage.
- \checkmark Design iterations may be necessary.

Partitioning

♦ Split large counters

Scan Test

- > Only costs one extra multiplexer
- > Normal mode: flip-flops behave as usual
- > Scan mode: flip-flops behave as shift register

CLK

Flop

Q

SCAN

SI

Logic BIST **Pseudo-Random Pattern Generator** PRPG All flops placed Scan chain Scan chain Scan chain Scan chain into large number of Logic BIST relatively short **Control unit** controller scan chains sequences all activity MISR **Multiple Input Signature Register** compresses responses into a signature

Memory Functional Model

PMBIST

♦ Architecture

Test Compression

- Compress the test input sequences
- Need a decompression units to make original test sequences
- Can be reduced for both limitations of ATE
 - The size of ATE memory
 - The width of ATE channel
- Can be reduced test application time

IEEE 1149.1 Device Architecture

SOC Design Evolution

- Emergence of very large transistor counts on a single chip
- Mixed technologies on the same chip
- Creation of Intellectual Property (IP)
- Reusable IP-based design

Test Scheduling

P1500

- Test scheduling problem
 - > Determine the minimal number of test sessions required to test all IPs
 - Determine the minimal colors that can be assigned to the nodes of a graph such that no edge connects two nodes of the same color
- More complex when test time and power are considered

