

A continuous-wave Raman silicon laser

Haisheng Rong, Richard Jones, ...
- Intel Corporation

Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim

Contents

- 1. Abstract
- 2. Background
 - I. Raman scattering
 - II. Two-photon absorption(TPA)
 - III. Free carrier absorption(FCA)
- 3. Laser Design
- 4. Experimental results
- 5. Conclusion & Summary

Abstract

- Achieving optical gain and/or lasing in silicon
 - **❖** Indirect band gap → very low light emission efficiency
- Stimulated Raman scattering
- Nonlinear optical loss
 - Two-photon absorption(TPA)-induced free carrier absorption(FCA)
 - Reverse-biased p-i-n diode
 - Limited to pulsed operation
 - Continuous-wave silicon Raman laser
- Laser cavity
 - Coating the facets of Si waveguide with multilayer dielectric films
- Stable single mode laser output
 - Side-mode suppression of over 55dB
 - Linewidth of less than 80 MHz
- Lasing threshold: p-i-n reverse bias / Laser wavelength: pump laser

Background

I. Raman Scattering (or Raman effect)

- Inelastic scattering of a photon
- \Leftrightarrow A small fraction of the scattered light($\approx 1/10^7$)
 - → frequency different from incident photon : usually lower than
- Rayleigh scattering
- When light is scattered from an atom or molecule, most photons are elastically scattered
- Scattered photon = incident photon(same E & wavelength)

Background

II. Two-photon absorption(TPA)

- ✓ Simultaneous absorption of two photons of identical or different frequencies
- √ Nonlinear optical process
- ✓ TPA « OPA (One-photon absorption)
- ✓ Linear absorption $\propto I_{light}^2$

III.Free-carrier absorption(FCA)

Laser Design

Laser cavity

- ❖ Low-loss SOI rib waveguide
- Coating the facets of Si waveguide with multilayer dielectric films
- R_f : 71%(1,686nm), 24%(1,550nm)
- ❖ R_b: 90%(1,686nm Raman & 1,550nm Pump)
- ❖ For minimizing optical power to achieve the lasing threshold ⇒ small cross-section
 - Not so small as to cause high transmission loss
- Width(W): 1.5um / Height(H): 1.55um / Etch depth(h): 0.7um / Effective core area: 1.6um²
- S-shaped waveguide
 - Total length: 4.8cm, Bend radius: 400um
 Transmission loss: 0.35 dB/cm
- p-i-n diode structure
 - To reduce nonlinear optical loss due to TPA-induced FCA

Laser Design

Schematic set-up

$$I_{\text{eff}} = I_i \frac{1 - e^{-\alpha L}}{\alpha L} \frac{(1 - R_f)(1 + R_b e^{-\alpha L})}{(1 - \sqrt{R_f R_b} e^{-\alpha L})^2}$$

- The coupling loss between the lensed fiber and the waveguide: 4dB
- The insertion loss of the de-mux and long-wavelength pass filter: 0.6dB
- Cavity enhancement effect of the pump power the lasing threshold
- When the pump laser is tuned to the resonance of the cavity: effective mean internal power (I_{eff})
- Power enhancement factor $M=I_{eff}/I_i$: 2.2
- At high power, α increases owing to TPA-induced nonlinear absorption, M reduces accordingly

Experimental results

Figure 3 Silicon Raman laser output power as a function of the input pump power at a reverse bias of 25 and 5 V. The pump wavelength is 1,550 nm and the laser wavelength is 1,686 nm. The slope efficiency (single side output) is 4.3% for 25-V bias and 2% for 5-V bias. Error bars represent standard deviations.

- ❖ Raman laser frequency is 15.6THz lower than that of the pump laser
- Slope efficiency(single side output)
 - 25V reverse bias: 4.3% / 5V: 2%
- Lasing thresholds Power
 - 25V: 182mW / 5V: 273mW
- Higher reverse bias voltage lower -> lower threshold & higher laser output
 - Because the effective carrier lifetime is shorter
 - lower nonlinear loss & higher gain
- Lasing saturation Power
 - 25V: 400mW / 5V: 500mW
- ❖ Nonlinear loss caused by TPA-induced FCA
 - Reduce the net gain at higher pump powers
 - Cavity enhancement factor M reduces
 lower the effective pump power in the cavity

Experimental results

- Confocal scanning Fabry-Perot spectrum analyser with free spectral range(FSR) of 8GHz(4.8cm cavity) & finesse of 100
- Pump power of 400mW & Reverse bias of 25V
- Single-mode output
 - No other cavity modes with expected mode spacing of 0.9GHz
- ❖ 80MHZ linewidth by the resolution of the spectrum analyser
- ❖ 1,548~1,558nm pump laser in 2-nm steps
- Side-mode suppression of over 55dB
- Center wavelength corresponds to appropriate Stokes shift
- Small fluctuation is due to insertion loss of demux, long-wavelength pass filter, and gain of erbium-doped fiber amplifier

Conclusion & Summary

- First demonstration of c.w. Raman lasing in silicon
- Improved by optimizing cavity mirror & length design
- Reduced threshold power by using smaller cross-sectional dimension & larger cavity enhancement
- Improved waveguide coupling efficiency by adding a mode converter
- Optimization of p-i-n diode design reduce the effective carrier lifetime to below 1ns
- Multilayer coating of cavity mirrors is replaced with waveguide Bragg reflectors, ring or microdisk resonator architectures