Low-threshold continuous-wave Raman silicon laser

HAISHENG RONG1*, SHENGBO XU1, YING-HAO KUO1, VANESSA SIH1, ODED COHEN2, OMRI RADAY2 AND MARIO PANICCIA1

1: Intel Corporation, 2200 Mission College Blvd, SC12-326, Santa Clara, California 95054, USA
2: Intel Corporation, S.B.I. Park Har Hotzvim, Jerusalem, 91031, Israel

November 14, 2012
Sun-young Jung
1. Introduction

2. Theoretical background
 - SRS
 - TPA and FCA

3. Experiment
 - Design consideration
 - Fabrication
 - Experimental setup

4. Result and conclusion
1. Introduction

Si Photonics offer low cost optoelectronics integration solutions

But, bulk Si is an indirect band gap semiconductor
→ Very low light emission efficiency

Using stimulated Raman scattering for amplification and lasing

Relatively high threshold power
→ Required high pump power

Improvement in the lasing threshold, slope efficiency, output power
2.1. SRS

✓ SRS: stimulated Raman scattering

- Rayleigh scattering
 - Elastic scattering

- Raman scattering
 - Inelastic scattering

Energy level

Incident photon:
- absorbed by material

Interaction with material lattice vibration

Photon emission:
- different energy

Frequency shift

\[E = hv \]

\[E = hv \]

\[E < hv \]

\[E > hv \]

Material absorption

Material loss

Stokes Wavelength

Anti-Stokes Wavelength

2. Theoretical Background

\[\lambda = \nu \]

\[\lambda = \nu \]

\[\lambda = \nu \]

\[\lambda = \nu \]
2.2. TPA and FCA

- **TPA (two photon absorption)**
 - Simultaneous absorption of 2 photons
 - Excite a molecule to higher energy state
 - Energy difference = E1 + E2
 - EHP generation
 - Nonlinear optical process

- **FCA (free carrier absorption)**
 - Material absorb photon
 - Carrier is excited: filled state → unoccupied state
 - Inter-band absorption: valence band → conduction band
 - FCA: in the same band
3.1. Design Consideration

- **Pump power** $I_p(z)$ along ring cavity

$$\frac{d}{dz}I_p(z) = -\alpha_p - \beta I_p(z) \cdot \frac{\sigma_{TPA} \cdot \tau_{eff} \cdot I_p(z)}{2} - \frac{\alpha_s \cdot \tau_{eff} \cdot I_p(z)}{2} - \frac{\sigma_{FCA}}{2} - I_p(z)$$

- **Round-trip gain in ring cavity** G(at Stokes wavelength)

$$G = \int_0^{\infty} \left[g_r I_p(z) - 2 \alpha_s z - 2 \beta I_p(z) - \frac{\sigma_s \cdot \tau_{eff} \cdot I_p(z)}{2} \right] dz$$

- **Incident power on resonance**

$$I_{inc} = I_p(0) \cdot \frac{1 - \sqrt{(1 - A) \cdot (1 - K_p)}}{K_p}, \quad A = 1 - \frac{I_p(L)}{I_p(0)} \cdot \quad K_p : power\ coupling\ ratio, \quad A : cavity\ loss, \quad L : cavity\ length$$

- **For low-threshold, high-efficiency**

1. Reduce cavity loss
2. Optimize coupling ratio
3. Reduce carrier lifetime

- **Raman gain**

- **Linear loss**

- **FCA**

- **TPA**

- **Incident power on resonance**

- **Cavity enhancement factor of pump depends on K_p, A**
3.2. Fabrication

- Ring-cavity configuration and waveguide cross-section

Design requirements
- For low-threshold, high-efficiency
 1. Reduce cavity loss
 2. Optimize coupling ratio
 3. Reduce carrier lifetime

- W : 1.5μm
- H : 1.55μm
- d : 0.7μm
- Racetrack-ring length : 3cm, 1.5cm
- Bus waveguide : 1.6cm

- Coupling length : varied 700~1100μm
 - To obtain desired coupling ratio

- Reverse biased p-i-n diode
 - To reduce free-carrier lifetime
 - Need to optimize dopant implant condition
3.3. Experimental Setup

To optimize lasing condition, the Stokes wavelength is outside the WDM filter's window. This is achieved by using a coupled bus waveguide with a frequency shift and cavity enhancement effect. The laser output is coupled into the bus waveguide using a lensed fiber. A long wavelength pass filter is used to block residual pump light.
4.1. Results

- **3cm cavity case**

 - As bias is increased: laser output is increased (∴ sweep out carrier efficiently)
 - As bias is lowered: laser output saturate earlier (∴ longer carrier lifetime)
 - Threshold change only slightly (∴ TPA much weaker at low pump power)
 - 0V is applied: can still operate (∴ reduced loss and lifetime)

- Coupling ratio (0.3, 0.12)

- Reverse bias: 25V

- Lasing threshold and slope efficiency depend on coupling ratio for pump and signal wavelength

- S.E = 23%, Threshold > 40mW
- S.E = 5.4%, Threshold < 20mW

- 4. Result and Conclusion
4.2. Results and Conclusion

- **Raman Si laser spectrum**
 - Pump laser at 1430.5nm, lasing at 1545.5nm
 - Side-mode suppression ratio > 80dB
 - Laser spectral linewidth < 100kHz

- **1.5cm cavity case**
 - Lasing performance can be optimized by adjusting coupling ratio
 - Lasing can also be achieved in smaller cavity with no bias
 - Realization of low-threshold and zero-power-consumption Si Raman laser
 - Demonstrate performance of low threshold and high output power
 - Also delivers spectral purity
 - No-voltage, all-optical laser are particularly attractive: remote sensing application
Thank you
Question and Answer