High-speed Serial Interface

Lect. 1 – Introduction
What is “interface”?
Interface application

• Wireline/Wireless
 (Communication/Network)

PPPoE: Point-to-Point Protocol over Ethernet
Interface application

• Box to Box
Interface application

- Rack to Rack (Inside data center)
Interface application

- Chip-to-chip
 - Inside your smartphone

mipi: Mobile Industry Processor Interface

LLI: Low Latency Interface
SSIC: Super Speed InterChip
UniPort: Unified Protocol

UFS: Universal Flash Storage
DigRF: Digital RF

DSI: Display Serial Interface
CSI: Camera Serial Interface

D-PHY: 80Mbs to 1Gbps, no symbol coding, no CDR
M-PHY: up to 5Gbps, 8B10B, CDR

SLIMBus: Serial Low-Power Inter-Chip Media Bus

SPMI: System Power Management Interface

BIF: Battery Interface

GBT: Giga Bit Trace

RFFE: RF Front-End
Why “high-speed”?

VGA (1990’s)
Resolution: 640 x 480
Color depth: 8bit
Refresh rate: 60Hz
→ 147Mb/s

WQXGA (2010’s)
Resolution: 2560 x 1600
Color depth: 24bit
Refresh rate: 60Hz
→ 5.9Gb/s
Why “serial”?

• Low-speed interface
Why “serial”?

• How to increase data rate? – parallel interface
 – To parallelize / to increase clock speed
 – Increased skew / pin count

Skew is not ignorable!!

N+1 pins!

Skew is not ignorable!!
Why “serial”?

- How to increase data rate? – serial interface
 - To send only high-speed data / to recover clock in Rx side
 - No skew problem / only 2 pin count
Why “serial”?

- PCB traces: GMII (Gigabit Media Independent Interface)
 - Between Ethernet MAC to PHY
Block diagram

- You will see this slide in (almost) every lecture! 😊
• **Goals**
 - Understand basics of high-speed serial interface
 - Learn how building blocks work
 - Design building blocks (In-Class Labs)
 - Learn advanced topics by surveying journal papers

• **Evaluation**
 - Quiz: 3x10 = 30
 - Lab Reports: 2x15 = 30
 - Student Presentation: 2x15=30
 - Class Participation: 10

• **Class Hours**
 - Mon 2:30-4 pm, Wed 1-2:30 pm

• **Lecturer**
 - Prof. Woo-Young Choi (최우영)
 - Room: B625, Tel: 02-2123-2874
 - wchoi@yonsei.ac.kr, tera.yonsei.ac.kr
Syllabus (Tentative)

Lect. 1: Introduction

Lect. 2: Channel characteristics – 1
- ISI, Frequency dependent loss
- Dielectric loss, skin effect, package parasitics, reflection

Lect. 3: Channel characteristics - 2
- Time domain measurement 1- Oscilloscope / Eye-diagram
- Time domain measurement 2 - TDR
- Frequency domain measurement - S-parameter

Lect. 4: Channel characteristics - 3
- Lumped element model
- Transmission line model
- S-parameter model

Lect. 5: Equalizer - 1
- Continuous-time linear equalizer (CTLE)
- Implementation

Lect. 6. Equalizer - 2
- Discrete-time equalization - Decision-feedback equalizer (DFE)
- Implementation

Lect. 7. Channel Equalizer - 3
- Asynchronous equalizer adaptation
- Synchronous equalizer adaptation
- On-chip eye-diagram monitoring

Lect. 8: Lab #1
- Behavioral-level design of CTLE and DFE

Lect. 9-10: Student Presentation in English, Quiz
Syllabus (Tentative)

Lect. 11: Noises in high-speed serial link
- Random noise, Power supply noise
- Input offset, Crosstalk
- BER, Bath-tub

Lect. 12: Clocking structure
- Clock distribution in system level
- Source synchronous (Clock source in Tx side)
- Plesiochronous (Clock source in both Tx and Rx side)
- Embedded clocking (Clock recovery in Rx side)

Lect. 13: Serializer/deserializer and low-power configuration
- Binary-tree, FIFO, Mux
- CMOS vs CML
- Optimizing delay
- Low-power configuration

Lect. 14: Jitter
- What is jitter?
- Jitter characterization

Lect. 15: Linear PLL dynamics - 1
- PLL block diagram
- S-domain analysis
- Jitter transfer function

Lect. 16: Linear PLL dynamics - 2
- Stability analysis in s-domain
- PLL bandwidth
- Input and supply noise transfer

Lect. 17: Charge-pump PLL
- Block diagram
- Effect of 3rd order loop filter
- PFD, Charge pump, VCO, Divider

Lect. 18: Phase noise analysis

Lect. 19-20: Student Presentation in English, Quiz
Syllabus (Tentative)

Lect. 21: Clock and data recovery (CDR)
- Why CDR?
- Saw-filter
- Over-sampling CDR
- Gated-oscillator-based CDR
- DLL-based CDR
- PLL-based CDR

Lect. 22: PLL/DLL-based CDR building blocks
- Linear phase detector
- Bang-bang phase detector
- Dynamics analysis of CDR loop using bang-bang phase detector

Lect. 23: Jitter in CDR
- Category of jitter - RJ DJ DDJ BUJ
- CDR Jitter characterization

Lect. 24: Digital PLL
- Digitally-controlled oscillator
- Time-to-digital converter
- Digital loop filter

Lect. 25: Digital CDR
- Difference from digital PLL
- Digitalizing linear phase detector

Lect. 26: LAB2
- Behavioral-level design of low SERDES, PLL, CDR

Lect. 27-28: Student Presentation in English, Quiz