High-speed Serial Interface

Lect. 6 – TX Driver and Equalizer
Block diagram

• Where are we today?
Classic output driver

- An inverter can be used as voltage-mode output driver

TTL output buffer

CMOS output buffer
Classic output driver

- It is difficult to use inverter-style output driver in high-speed applications
 - Full-swing logic is speed-limited because of slow switching time of inverter-style driver
 - Impedance matching is not easy
 - Transistors have variable output resistances during output voltage transients
Single-ended signaling

- Signal is transferred via single channel
- Simple but …
- Threshold should be generated in RX side.
 - Logic levels in TX may not be same as in RX side
 - Supply and ground levels are different for RX and RX sides
- Poor noise immunity
 - Noises are added while signals travel through channel
Differential signaling

- Differential signals are transferred via two adjacent channels
 - Each signal has opposite logic level
 - Ex) twisted pair, differential PCB lines
Differential signaling

• Larger signal swing and self-reference
 – Signal = (positive signal – negative signal)
 ➔ Decision margin enhanced
 – threshold = (positive signal + negative signal)/2

• Common-mode noise rejection
 – Noise usually affects both positive and negative channels
 – Subtraction rejects common-mode noise
Current-mode driver

• Reduced switching time
 – Current-steering: Switching current path while source current is kept constant.
 – Switching time is reduced since current source is not turned-off

• Disadvantage
 – Differential signaling is required.
 – Static current causes static power consumption
 – Usually larger power consumption than voltage-mode
50-Ω termination

• Why 50Ω?
 – Historical issue

 • In early microwave systems, it was known that
 – 33Ω shows best performance in power transfer
 – 75Ω shows best performance in signaling
 – For convenience, 50 Ω was selected instead of medium value, 54 Ω

 • Nowadays, almost all high-speed instruments are 50Ω-based
 → Significant for high-speed serial interface
 – In CATV systems, 75-Ω termination is still used
50-Ω termination

- **Tx-side termination topology**
 - Voltage-mode driver has small output impedance
 → Series termination
 - Current-mode driver has large output impedance
 → Parallel termination
DC- and AC-coupling

- AC coupling with a series capacitor
 - Both TX and RX are possible
 - Common-mode voltage can be separately controlled in both side
 - Coupling capacitor can cause low-frequency loss
 → Capacitance $> 100\text{nF}$ is generally used.
DC- and AC-coupling

- AC coupling cannot be used if consecutive identical bits are transmitted
 \Rightarrow 8B/10B coding for many standards
Push-pull driver

- 2 current sources
 - Current path switching
 - Upper and lower pairs
 - Same rising and falling time for each differential signal
 - Upper PMOS pair can be replaced by NMOS pair to enhance switching time
 - Head room problem in low-voltage technologies
 - Used in Low-Voltage Differential Signals (LVDS) standard
 - TX termination?
CML (Current-Mode Logic) driver

- Loaded by 50ohm resistor
 - Current steering
 - Both side are terminated by 50Ω
 - Output voltage can be both DC, AC-coupled
 - Used in most high-performance serial link
TX equalization

- Channel causes ISI on received signal.
 - High-frequency loss in channel \rightarrow eye-diagram closed
TX equalization

- TX driver can be also channel equalizer
 - TX driver can enhance high-frequency components before traveling through channel.
How to reject ISI?

- **FIR filtering**
 - Forcing cursors to 0 can be implemented by FIR filtering.
 - ISI can be removed since we know input data in TX-side.
 - Tx-side FIR filtering can include pre-cursor.
Feedforward vs Feedback

- DFE
Pre-/De-Emphasis

- Tx FIR is often called Pre-/De-Emphasis
 - De-emphasis: to reduce low-frequency components
 - Pre-emphasis: to enhance high-frequency components

- High-frequency component is transition bits
Circuit implementation

- Current-mode drivers can be easily used for pre-/de-emphasis
 - It is very easy to modify drivers into current-mode adder including controllable gain

![Circuit diagram](image-url)
Circuit implementation

• Simultaneous implementation of pre-/de-emphasis
 - $D_1 = D_0 \rightarrow V_{\text{out,diff}} = \pm 50 \times (C_0 - C_1) \Rightarrow \text{De-emphasis}$
 - $D_1 \neq D_0 \rightarrow V_{\text{out,diff}} = \pm 50 \times (C_0 + C_1) \Rightarrow \text{Pre-emphasis}$
 - Level difference is defined as sum and subtract

![Circuit Diagram]
Tx- vs. Rx- equalization

• **Tx equalization**
 – Consumes large power
 – Enlarged output signal improves SNR at Rx side
 – Easy implementation

• **Rx equalization**
 – Relatively low power consumption
 – More complex implementation (especially DFE)
 – For best performance, LE and DFE combination
Design example

“4-Channel 3.2/6.4-Gbps Dual-rate Transmitter”
김두호, 최우영
대한전자공학회 논문지 2010
4ch transmitter with 1-tap pre-emphasis
Dual-rate (3.2/6.4 Gbps)
130nm CMOS technology / COB package
600mW dissipation @1.2V power supply
Design example

- 4-channel transmitter sharing a clock generator
 - 2:1 serializer function is included in pre-emphasis circuit
 - Displayport application
Design example

• Clock generator performance
 – PLL jitter is main performance metric of transmitter evaluation.
Design example

- De-emphasis waveform

$V_{\text{swing}}=600 \text{mV}_{\text{diff}}$ / De-emphasis=$1/3$

$V_{\text{swing}}=600 \text{mV}_{\text{diff}}$ / De-emphasis=$1/2$

$V_{\text{swing}}=600 \text{mV}_{\text{diff}}$ / De-emphasis=$2/3$

$V_{\text{swing}}=600 \text{mV}_{\text{diff}}$ / De-emphasis=1

3.2Gb/s
Design example

- De-emphasis waveform

V_{swing}=600mV_{diff} / De-emphasis=1/3

V_{swing}=600mV_{diff} / De-emphasis=1/2

V_{swing}=600mV_{diff} / De-emphasis=2/3

V_{swing}=600mV_{diff} / De-emphasis=1