Cascaded Silicon Micro-Ring Modulators for WDM Optical Interconnection

Sun-Young Jung
Broadband Transmission Network Lab
Introduction

- **Optical interconnection**
 - To solve bottleneck for next generation computing system

- **WDM**
 - To increase data rate
 - Full utilization of BW

- **Design goal**
 - Compact, Low power consumption
 - High BW, Low latency
 - With full CMOS-compatibility
 - Independent among WDM channels
 - High data rate

- **Cascaded Si Micro-ring modulator for WDM optical interconnection system**
 - Small size
 - Less RF power
 - Enable WDM channel to modulate independently
 - Only resonant \(\lambda \) is modulated
 - Other \(\lambda \) pass through
Design of Ring-Modulator

- Adopted from previous work
 “Micrometer-scale electro-optic modulator,”

- PIN structure: using plasma dispersion effect
 - Free carrier injection and extraction
 - Change of refractive index and resonant λ

- Limitation: speed of the modulator is 400Mbps (NRZ)
 - PIN junction is formed on only part of ring
 Can not be efficiently extracted \rightarrow longer fall time
 - Only single channel
Proposed Design

- **Experimental structure**

- **To improve speed of modulator**
 1. n+ doped region is added to form nearly PIN junction
 2. Reduce the distance between doped region and ring

- **To achieve WDM system**
 1. Tx: 4 cascaded ring resonators
 - radii: 4.98, 5.00, 5.02, 5.04 μm
 - channel spacing: 3.6 nm
 2. Rx: demux using similar ring with drop ports

- Increase extraction speed with same reverse bias
- Generate WDM channels independently
✓ **Ununiformed channel spacing**
 - Imperfection of resonator
 - Would be compensated by heating

✓ **Depth of dip : extinction ratio**
 - Critical-coupling : CH.1 & CH.2
 - Under-coupling : CH.3 & CH.4

✓ **Double-dip**
 - Coupling between clockwise and counter-clockwise traveling modes
 - By roughness induced back-reflection
Eye-diagram

Data rate of each channel: 4Gbps
- CH.1: 1558.1nm
- CH.2: 1556.8nm
- CH.3: 1552.9nm
- CH.4: 1549.5nm

Data rate of channel: 6Gbps
- Black: measured
- Red: simulated
- Blue: temporal change of resonant λ

Rise and fall times:
- 40ps and 60ps
- Possible modulation speed: 10Gbps

Overshoot at rising edge:
- Most: Inherent property of ring modulator
- Small portion: response of optical detector
On-resonance:
- Small output: destructive interference between input and trapped light

Off-resonance:
- Resonant \(\lambda \) change: no destructive interference any more
- Slightly \(\lambda \) shift in ring
- Overshoot frequency: proportional to \(\lambda \) shift
- Damping ratio: determined by photon life time
Channel Crosstalk

Ring 1 is modulated at 4Gbps

Crosstalk is analyzed between CH.1 and 2

- Black: output at resonant λ of ring 1
- Blue: output at resonant λ of ring 2
- Green: output at edge of resonant λ of ring 2
- Red: output at outside of ring 2 - resonant λ

- No significant modulation is observed
- No crosstalk between channels 1.3nm apart
- Theoretically, spacing can be reduced below 0.6nm
Conclusion

- Cascaded Si micro-ring resonator based WDM optical interconnection was proposed and experimented
 - To solve bottleneck + To utilize wide BW

- New design was proposed
 - To improve speed of modulator
 - 10Gbps data rate possibly achieve

- Channel crosstalk was analyzed
 - No crosstalk at spacing 1.3nm
 - theoretically, 50 channels support (with ring diameter 3μm)

- 10Gbps × 50 channels data BW can be expected in such system
Thank you for listening
- Question and Answer

Sun-Young Jung
sunyoung0125@naver.com