Lect. 11: High-Frequency Response of MOS Transistors

- MOSFET has many capacitive elements

Lect. 11: High-Frequency Response of MOS Transistors

- Circuit with capacitors

- Can be simplified somewhat but still requires very complex analysis
\rightarrow Simulation

Lect. 11: High-Frequency Response of MOS Transistors

- How fast can a MOSFET transistor operate?
- What determines this?

Unit-Gain Frequency $\left(\mathrm{f}_{\mathrm{t}}\right)$:
Frequency at which magnitude of the short-circuit current gain of CS configuration becomes 1

Lect. 11: High-Frequency Response of MOS Transistors

$$
\begin{aligned}
& \frac{I_{0}}{I_{i}} \text { in frequency }(\omega) \text { domain? } \\
& \begin{aligned}
& I_{0}=g_{m} V_{g s}-\frac{V_{g s}}{1 / j \omega C_{g d}}=g_{m} V_{g s}-j \omega C_{g d} V_{g s} \\
& \sim g_{m} V_{g s}\left(\operatorname{assuming} g_{m} \gg \omega C_{g d}\right) \\
& V_{g s}=I_{i} \cdot\left(\frac{1}{j \omega C_{g d}} \| \frac{1}{j \omega C_{g S}}\right)=I_{i} \cdot \frac{1}{j \omega\left(C_{g d}+C_{g s}\right)} \\
& \therefore \frac{I_{0}}{I_{i}}=\frac{g_{m}}{j \omega\left(C_{g d}+C_{g s}\right)}
\end{aligned}
\end{aligned}
$$

Lect. 11: High-Frequency Response of MOS Transistors

Unit-Gain Frequency $\left(\mathrm{f}_{\mathrm{t}}\right)$:
Frequency at which magnitude of the short-circuit current gain of CS configuration becomes 1

$$
\begin{aligned}
& \frac{I_{0}}{I_{i}}=\frac{g_{m}}{j \omega\left(C_{g d}+C_{g s}\right)} \\
& \text { For }\left|\frac{I_{0}}{I_{i}}\right|=1, \omega=\frac{g_{m}}{C_{g d}+C_{g s}} \\
& f_{T}=\frac{g_{m}}{2 \pi\left(C_{g d}+C_{g s}\right)}
\end{aligned}
$$

How to make MOSFET faster?

Which is faster, NMOS or PMOS?

$$
g_{m}=\sqrt{2 \mu C_{o x} \cdot \frac{W}{L} \cdot I_{D}}
$$

Lect. 11: High-Frequency Response of MOS Transistors

$$
f_{T}=\frac{g_{m}}{2 \pi^{*}\left(C_{z^{d}}+C_{s^{5}}\right)}
$$

Confirm above with our PSPICE model

$$
\begin{aligned}
& \left(\mathrm{L}=0.25 \mu \mathrm{~m}, \mathrm{~W}=10 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1.5 \mathrm{~V}\right) \\
& C_{8 s}=1.51 * 10^{-14}[\mathrm{~F}] \\
& C_{8 d}=4.59 * 10^{-15}[\mathrm{~F}] \\
& g_{m}=0.00304[\mathrm{~A} / \mathrm{V}] \\
& f_{T}=\frac{0.00304}{2 \pi *\left(1.968 * 10^{-14}\right)}=24.5 \mathrm{GHz}
\end{aligned}
$$

Lect. 11: High-Frequency Response of MOS Transistors

Lect. 11: High-Frequency Response of MOS Transistors

Homework
-Determine by simulation how f_{T} changes as a function of $\mathrm{V}_{\mathrm{GS}}($ from 1 V to 2 V) and $\mathrm{V}_{\mathrm{DS}}($ from 1 V to 2 V) for our NMOS transistor with $\mathrm{L}=0.25 \mu \mathrm{~m}, \mathrm{~W}=10 \mu \mathrm{~m}$.

