Digital Electronics

How to implement logic circuits?

→ Inverters are the basic building block!

Ideally,

Electronic Circuits 2 (15/1)

Larger noise margin \rightarrow smaller V_{IH}, larger V_{IL} \rightarrow Larger |A_v|

Electronic Circuits 2 (15/1)

Electronic Circuits 2 (15/1)

Large R preferred

W.-Y. Choi

RC time constant for pull-down and pull-up operation

Small R preferred for fast operation

→ Better way of implementing inverters?

W.-Y. Choi

Direct current path when V_{IN} is high

Static power consumption!

→ How can we shut it off when input is high?

W.-Y. Choi

Complementary MOS (CMOS) Inverter

➔ The most popular building block for today's digital electronics!

Electronic Circuits 2 (15/1)

W.-Y. Choi

Estimation of important parameters for CMOS inverter: V_M , $A_v(V_M)$, NM_L , NM_H

Electronic Circuits 2 (15/1)

Estimation of important parameters for CMOS inverter: V_M , $A_v(V_M)$, NM_L , NM_H

W.-Y. Choi

Estimation of important parameters for CMOS inverter: V_M, A_v(V_M), NM_L, NM_H

W.-Y. Choi

In each cycle, Q = CV_{DD} is charged and discharged over V_{DD} In each cycle, energy of CV_{DD}^2 is consumed Power consumption: fCV_{DD}^2

→ Make them smaller, smaller,

W.-Y. Choi