Lect. 24: CMOS Logic Gates (Razavi 15.3)

Electronic Circuits 2 (15/1)

Electronic Circuits 2 (15/1)

Y Pull-down,

Initially, Q_A OFF or Q_B OFF Initially, Q_A OFF and Q_B OFF (A LOW and B LOW) $Q_A ON$ and $Q_B ON$ $Q_A ON \text{ or } Q_B ON$ (A HIGH or B HIGH) $\overline{Y} = A + B$ $Y = \overline{A}\overline{B}$ NOR Gate

Electronic Circuits 2 (15/1)

Y Pull-up,

(A HIGH or B HIGH) (A LOW and B LOW)

CMOS NOR Gate

Structures of PUN and PDN have the duality property

Three input CMOS NOR Gate?

W.-Y. Choi

Electronic Circuits 2 (15/1)

Y Pull-up,

Y Pull-down,

Initially, $Q_A OFF \text{ or } Q_B OFF$
(A LOW or B LOW)Initially, $Q_A OFF \text{ and } Q_B OFF$
(A HIGH and B HIGH) $Q_A ON$ and $Q_B ON$
(A HIGH and B HIGH) $Q_A ON \text{ or } Q_B ON$
(A LOW or B LOW) $\overline{Y} = AB$ \rightarrow NAND Gate $Y = \overline{A} + \overline{B}$

Electronic Circuits 2 (15/1)

CMOS NAND Gate

Three input CMOS NAND Gate?

W.-Y. Choi

Electronic Circuits 2 (15/1)

Logic function?

W.-Y. Choi

Electronic Circuits 2 (15/1)

Complicated digital logic gates can be realized by CMOS logic gates!

Electronic Circuits 2 (15/1)

