Lect. 3: MOS Transistors (2)

$i_{D}(\mathrm{~mA}) A$
$v_{D S} \leq v_{G S}-V_{t} \quad v_{n \mathrm{c}} \geq v_{C \mathrm{C}}-V_{\text {, }}$
$v_{S D}$

Cut-off : $i_{D}=0$
Triode: $i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left[2\left(v_{G S}-V_{T H}\right) \cdot v_{D S}-v_{D S}^{2}\right]$
Saturation: $i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{T H}\right)^{2}$

Cut-off: $i_{D} \quad 0$
Triode: $i_{D} \frac{1}{2}{ }_{p} C_{o x} \frac{W}{L} 2\left(v_{S G}\left|V_{T H}\right|\right) v_{S D} \quad v_{S D}{ }^{2}$ Saturation: $i_{D} \quad \frac{1}{2} \quad{ }_{p} C_{o x} \frac{W}{}\left(v_{S G} \quad\left|V_{T H}\right|\right)^{2}$

Lect. 3: MOS Transistors (2)

Deviation from the ideal model

1) I_{D} really zero in Cut-Off?

Leakage between S and D: more significant for smaller MOSFET
\rightarrow Significant problem in modern digital circuits

Lect. 3: MOS Transistors (2)

2) In saturation, $i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{T H}\right)^{2}$
\rightarrow Should have no dependence on $v_{D S}$

But I_{D} increases with $v_{D S}$ even in saturation

Lect. 3: MOS Transistors (2)

3) Body effect: Voltage applied to B causes change in threshold voltage

$$
\begin{aligned}
& i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{T H}\right)^{2} \\
& \mathbf{V}_{T H}=\mathbf{V}_{\text {THO }}+\gamma\left[\sqrt{2 \phi_{f}+\mathbf{V}_{S B}}-\sqrt{2 \phi_{f}}\right] \\
& \mathbf{V}_{T H}=\mathbf{V}_{\text {THO }} \text { when } \mathbf{V}_{S B}=\mathbf{0} \\
& \phi_{f} \text { and } \gamma: \text { process-dependent parameters }
\end{aligned}
$$

If S and B can be tied, no body effect.
But in IC, B is shared among many transistors
B is connected to

- the most negative supply voltage (NMOS)
- the most positive supply voltage (PMOS)
$\rightarrow \mathrm{V}_{\mathrm{TH}}$ depends on V_{S}
Difficult to model analytically $\boldsymbol{\rightarrow}$ Simulation

Lect. 3: MOS Transistors (2)

Body effect: Voltage applied to B causes a change in threshold voltage.

Lect. 3: MOS Transistors (2)

4) Temperature effect: Many MOSFET parameters are temperature dependent

Higher temperature causes reduction in I_{D}

Lect. 3: MOS Transistors (2)

- Modern transistors are very complicated in their structure.
- Many parameters are needed to model their characteristics accurately in SPICE
- SPICE parameters for $0.25 \mu \mathrm{~m}$ NMOS are shown on the right
- Although complicated, they can precisely model the transistor characteristics
\rightarrow Two-track approach:
- Simple, easy-to-use models for analysis
- Complicated, accurate models for simulation

Lect. 3: MOS Transistors (2)

Homework
(Due on $3 / 9$ before TA session for those who are familiar with PSPICE.
For those who are not, due on $3 / 11$ before lecture.)

- Simulate I-V characteristics of NMOS and PMOS transistors using PSPICE model provided in the course web. Use $\mathrm{L}=0.25 \mu \mathrm{~m}$ and $\mathrm{W}=10 \mu \mathrm{~m}$.

