

- Amplifier output signal should be **faithful replica** of input signal with desired amount of amplification
- → Linear (Small-signal operation for MOS transistor)
- Key amplifier parameters:

Gain

 R_{in} and R_{out}

How can make amplifiers with MOS transistors

Three basic configurations: CS, CG, CD (SF)

- Common Source
- How does it work?
- Operation in saturation

$$R_D I_D < V_{DD} - \left(V_{GS} - V_{TH} \right)$$

- CS

- CS

- With channel length modulation

- With a load (R_L)

- CS with Current-Source Load

- CS with Diode-Connected Load

$$A_{v} = -g_{m1} \left(\frac{1}{g_{m2}} \| r_{O1} \| r_{O1} \right)$$

- CS with Degeneration

- Why source degeneration?
- Bias stabilization

- R_1 , R_2 provide bias for M1
- Why C₁?
- What happens if R_1 , R_2 fluctuate?

- Why source degeneration?
- Bias stabilization

- Any fluctuation in M1 gate voltage is stabilized by R_S (Negative feedback)

- Output Impedance for CS with Degeneration

 R_{out} for CS with Degeneration?

- Homework

Prob. 7.17. 7.19 (Assume $\lambda = 0$) in Razavi

