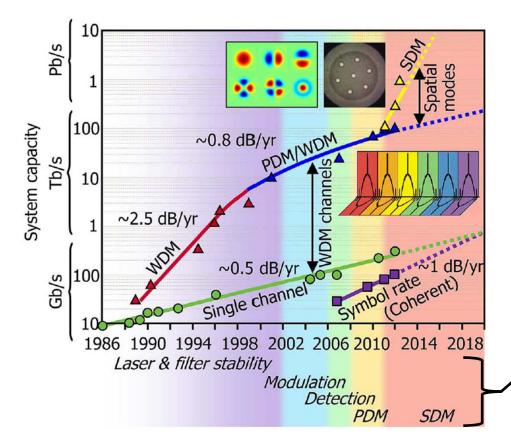
High-spectral-efficiency optical modulation formats

Peter J. Winzer

Journal of Lightwave Technology, Vol. 30, No. 24 (2012)

Contents

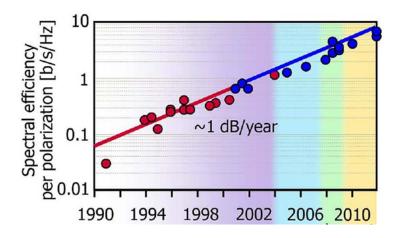
- Introduction
- The Anatomy of a Modulation Format
- Key Trade-Offs in Choosing a Modulation Format
- Conclusion



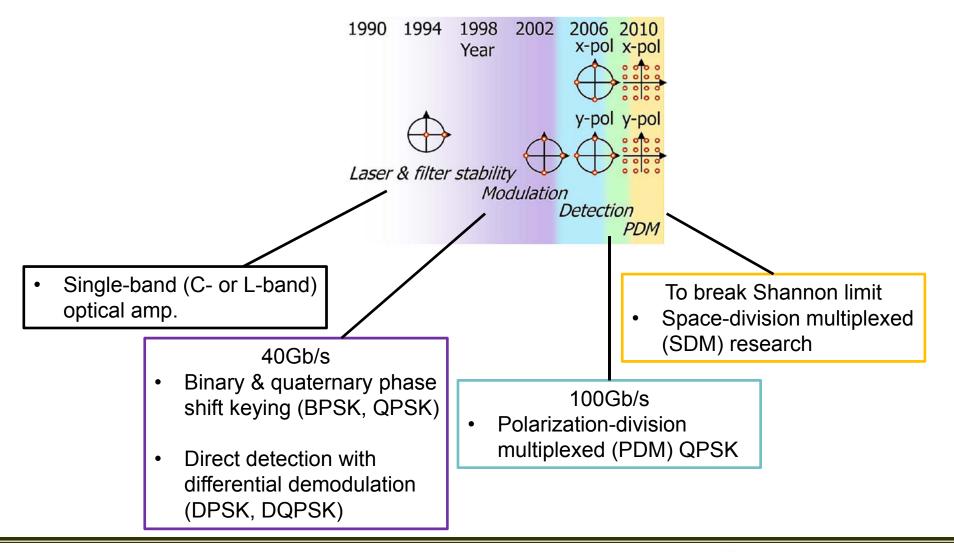
Introduction

- Communication system: grows exponentially
- Demand for communication bandwidth
 : wavelength-division multiplexed (WDM) optical transmission systems
- Researched, developed since the early 1990s
- Research experiments \rightarrow commercial products follows in 5 years

Growth of optical communication system


Evolution of various bit rates

- Single-channel bit rates
 : 0.5 dB/year
- Aggregate per-fiber capacities : <u>2.5 dB/year</u>
- Rapid advances in optoelectronic device technologies


"Optical and electronic bandwidths had met"

- Advance in optical & electronic & optoelectronic device technologies
- Laser reached GHz frequency stabilities (early 2000s)
- Optical filter: BW for 50-GHz WDM channel spacings
- Efforts on increasing "spectral efficiencies"
 : To pack more information into the limited BW (~5-THz)

Development of optical modulation

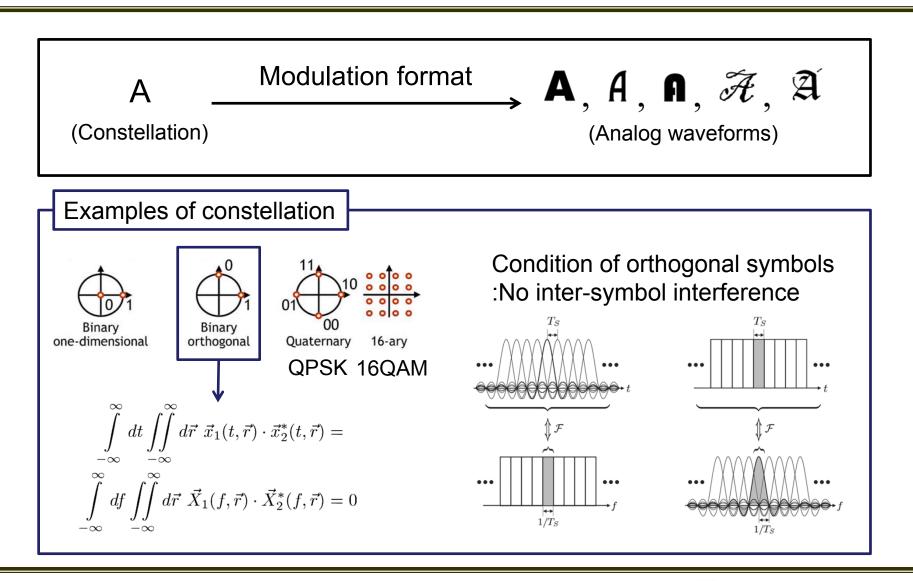
Digital communication & Structure of Language

Language	Digital communications		
Alphabets of letters	Symbol alphabets (constellations)		
{A,B,C,,Ζ}, {α,β,γ,,ω}, {0,1,2,,9}	01010100		
Analog letter representations	Analog waveform representations		
'A' → A, A, N, Æ, A,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Letters arranged in series	One symbol transmitted per symbol period		
Redundancy in words or sentences 'laguage' or 'langyage' → 'language'	Error correcting codes Overhead in time (forward error correction, FEC) or in symbol alphabet (coded modulation)		
Synonym expressions (ex: use 'ponder' instead of 'think' to avoid confusion with 'sink')	Line coding Overhead in time or in symbol alphabet (ex: '11011' \rightarrow {+1,+1,0,-1,-1}: 'Duobinary')		

 $\{a_k\}$: discrete communication symbols (<u>constellation</u>)

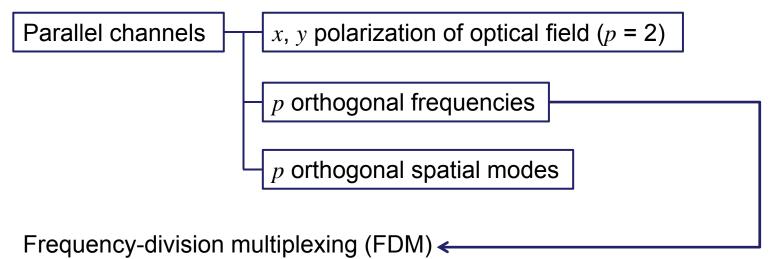
 $\{x_k(t)\}$: a set of <u>analog waveforms</u> (corresponds to each symbols)

 $R_{\rm S}$: Sequentially transmitted <u>symbol rate</u> (Symbol period $T_{\rm S} = 1/R_{\rm S}$)


Transmit waveform $s(t) = \sum_k x_k(t - kT_S)$

M: Constellation size (number of available alphabet letters) : Each symbol conveys $\log_2 M$ bits of information

Bit rate $R_{\rm B} = R_{\rm S} \log_2 M$ ightarrow 0 me-dimensionalEx) Simple binary symbol M=2Symbols: Sending no pulse & sending a pulse


Modulation format

Multiplexing

 $R_{\rm B} = pR_{\rm S}\log_2 M$: the aggregate bit rate of multiplexed system (*p* number of <u>parallel channels</u>)

- Example in EM wave: radio system (channel selection for frequency)

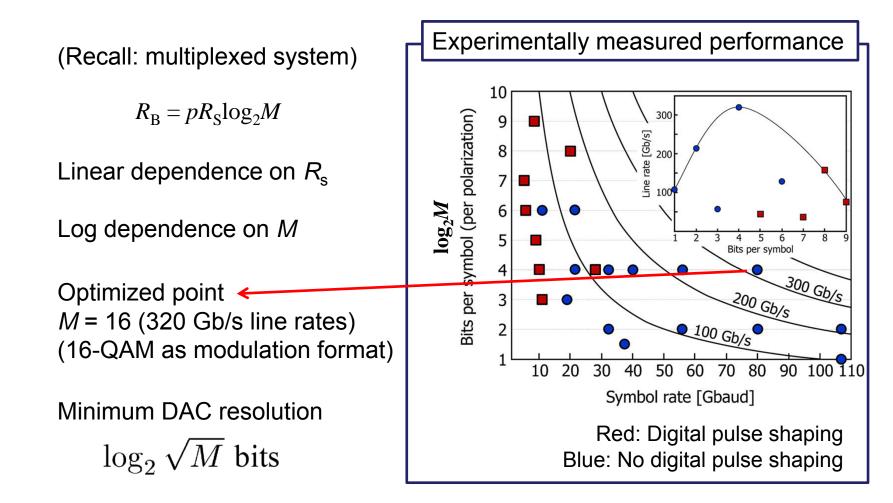
Coding

(Recall: Table 1)

Redundancy in words or sentences 'laguage' or 'langyage' → 'language'	Error correcting codes Overhead in time (forward error correction, FEC) or in symbol alphabet (coded modulation)	: Forward error correction
Synonym expressions (ex: use 'ponder' instead of 'think' to avoid confusion with 'sink')	Line coding Overhead in time or in symbol alphabet (ex: '11011' → {+1,+1,0,-1,-1}: 'Duobinary')	: Line coding

 \rightarrow Inject $\underline{redundancy}$ in digital communication

Line rate: gross channel bit rate including all coding redundancy


Code rate R_c (< 1): ratio of information bit rate to line rate

Coding overhead OH = $(1 - R_c)/R_c$

(OH ~ 7% for standard fiber-optic communication system)

DAC resolution

Optimization: M > 16 for CMOS-integrated DAC+DSP ASIC solution

ADC resolution

ADC resolution: specified in terms of <u>ENoB</u> (effective number of bits)

M	$log_2(M)$	\sqrt{M}	$log_2(\sqrt{M})$	ENoB [67]
4	2	2	1	~4
16	4	4	$\frac{2}{+3 \text{ bits}}$	~5
64	6	8	3	~6
256	8	16	4	~7

1-dB receiver sensitivity penalty pre-FED bit error ratio (typically 10⁻³)

 \rightarrow 3 bits more than $~\log_2\sqrt{M}$

Transmitter/receiver sensitivity penalty Gap between experimentally achieved and theoretically possible SNR (BER of 10⁻²)

Bits per symbol (per polarization)

6

5

4

3

1.5

0.6

5

400 Gbls

50

100

Gols

B

3

2.0

dB 1.01.3

0.6

10

3.3

2.8

0.6

20

Symbol rate [Gbaud]

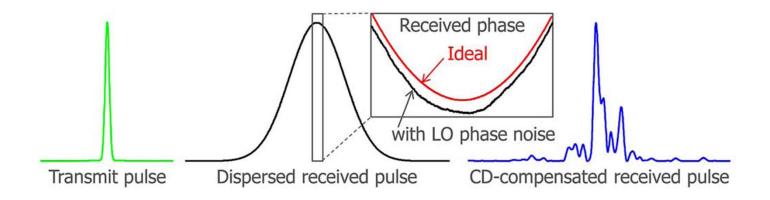
Digital filter size

Linear optical impairments

- : can be compensated by digital filters in receiver's DSP
- <u>Chromatic dispersion (CD)</u>—
- Polarization-mode dispersion (PMD)
- Etc...

CD can be compensated using a filter with inverse phase profile Ex. 2000 km of standard single-mode fiber

 \rightarrow CD compensation capability of 34 ns/nm at ~30 GBaud

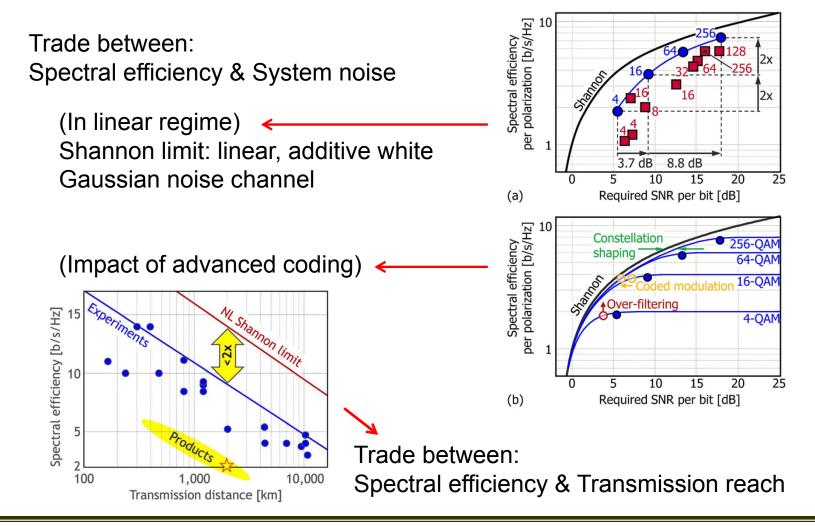

Length of filter's impulse response ~ $0.032 \cdot \text{CD}_{[ns/nm]} \cdot R_{S[\text{GBaud}]}^2$

(Adjacent-pulse overlap: due to dispersive pulse broadening)

 \rightarrow scales quadratically with $\underline{\text{symbol rate}}$

Laser phase noise

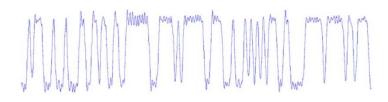
Phase noise \rightarrow degrades detection performance

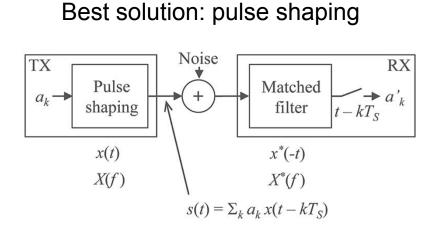

- Random phase fluctuation of signal & local oscillator light
- Pattern-dependent phase perturbations (due to fiber nonlinearities)

More sensitive in higher-order modulation formats

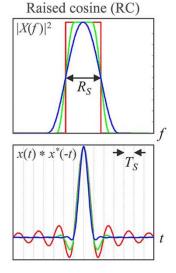
Spectral Efficiency vs. Noise

Independent of single-channel interface rates & constellation size

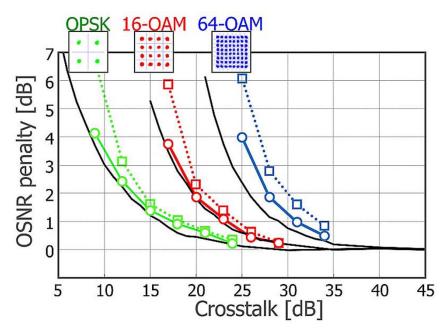



Spectral efficiency & pulse shaping

Choice of analog transmit waveforms is important aspect


Electronic multiplexers (to generate binary drive signals)
 : Output determine exact pulse shape

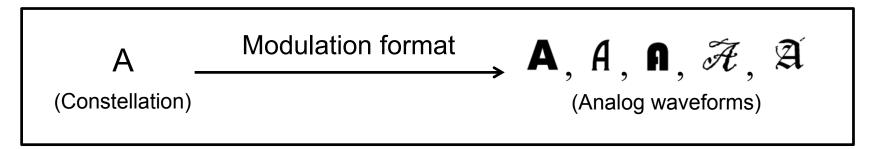
Non-return-to-zero (NRZ) waveform : Significant amount of <u>non-linear ISI</u> Cannot be removed by linear equalization



Crosstalk tolerance

Crosstalk between individual channels

- WDM crosstalk: among neighboring WDM channels
- In-band crosstalk: signals along same wavelength slot


SNR penalty vs. Crosstalk (BER of 10⁻³)

- Higher-order modulation format \rightarrow Crosstalk \uparrow
- High power required to ignore crosstalk

Conclusion

- Structure of optical modulation formats
 - Constellation (Digital)
 - Pulse shaping (Analog)

- Trade-off between symbol rate, constellation size, and pulse shaping effect
 - Investigate optimal point of communication performance $(R_{\rm B} = pR_{\rm S}\log_2 M)$

