UTC-PD
(Unitraveling-carrier photodiode)

Contents (UTC-PD)

1. UTC-PD operation (UTC-PD vs pin-PD)
2. Device characteristics
3. Digital, Analog application
4. Conclusion
UTC–PD operation (UTC–PD vs pin–PD)

- **Pin–PD characteristic**
 - Both electrons and holes contribute to the response
 - Carrier velocity: hole < electron
 - Response: hole transport dominant

- **UTC–PD characteristic**
 - Use of electrons as the only active carriers
 - Active part: absorption layer (p-type) + carrier collection layer (lightly n-type)
 - Diffusion block layer: unidirectional motion of electrons
 - Band gap grading: reduce electron traveling time
UTC–PD operation (UTC–PD vs pin–PD)

- UTC–PD advantage 1: high speed
 - Electron diffusion time dominant
 - Large minority mobility of electron in p–InGaAs
 - And design thin absorption layer without sacrificing the RC charging time

Photocurrent \uparrow
 \rightarrow Mobile charge density \uparrow
 \rightarrow Modulate field profile

〈 Charge distribution, field, and band bending at high carrier injection levels 〉
UTC–PD operation (UTC–PD vs pin–PD)

1. UTC–PD advantage 1: lower saturation current
2. UTC–PD advantage 2: higher saturation current
 - electron velocity overshoot >> hole velocity (pin–PD)

Electric field ↓
→ carrier velocity ↓
→ charge storage ↑
→ current saturation

UTC–PD operation
Device characteristics

- Basic photoresponse
 - Slow tail caused by slow hole transport
 - Low saturation output
 - Slow response by space charge effect

- Pulse photoresponse of Pin–PD

- Pulse photoresponse of UTC–PD
 - High speed (advantage 1)
 - Wide linearity

- UTC–PD advantage 3: wide linearity
Device characteristics

- Bandwidth

UTC–PD advantage 1: high speed
- Large minority mobility of electron in p–InGaAs
- And design thin absorption layer without sacrificing the RC charging time

 UTC–PD frequency response

- Effect of self–induced field

 \[J(x)_{\text{hole}} + J(x)_{\text{electron}} = \text{const.}, \quad J(x)_{\text{hole}} \text{ is hole current density at position } x \]

 induced electric field \(E(x)_{\text{ind}} \cong \frac{J(x)_{\text{hole}}}{\sigma_p}, \quad \sigma_p \text{ is conductance} \)
Device characteristics

- Zero-biased operation
 - maintained high electron velocity by the built-in field of the pn junction
 - Simple, small, light and less expensive system

- Zero biased UTC–PD: restricted output
 - Solution: cascaded UTC–PD
 - Twice output voltage

 UTC–PD advantage 4: Zero–biased operation
1. Photoreceiver
 - For ultra-high bitrate communications system
 - Wider bandwidth, simpler system, better sensitivity

(a) optical amplifier
 (b) pin-PD

Digital application
2. **Ultrafast optical gate**

- Optical driver to overcome the speed limitation of electronic circuits
- O–E–O type optical gate
- UTC–PD supply sufficient voltage to drive the EAM

Diagram:
- MSL: microstrip line
- TW–EAM: electroabsorption modulator having a traveling wave electrode
Analog application

1. High-power millimeter wave generation
 - Key parameters: RC time constant & intrinsic carrier traveling time
 - Solution: matching circuit to overcome the RC time constant

<matching circuit integrated UTC-PD> <UTC-PD performance> <UTC-PD vs pin-PD>

Space charge effect
2. Signal source for measurement systems
 - Use high frequency and very short electrical pulse generated by UTC–PD

3. Transmitter for Fiber–radio communications system

4. Nonlinear photonic up–conversion
 - Pin–PD based solution: low conversion efficiency
 - UTC–PD saturation → strong nonlinearity → high power frequency converter
Conclusion

1. UTC–PD operation
2. UTC–PD characteristic
 - High speed, High output saturation current,
 - Linearity, Zero bias operation
3. Digital/Analog application
 - Digital
 ① Photoreceiver
 ② Ultrafast optical gate
 - Analog
 ① High-power millimeter generation
 ② Signal source for measurement systems
 ③ Transmitter for Fiber–radio communications system
 ④ Nonlinear photonic up–conversion
Thank you for listening

Q&A