Lesson 14&15

BJT Small-Signal Model 1,2

2014142192 심동훈

*Combining Time Response with I,V Characteristics

*Large-Signal and Small-signal

•We have to think about "Small-signal" operation for pervious page.

Large-Signal operation : the signal is arbitrarily large => Change of I_C is larger than I_{C0}

Small-Signal operatio	Ic power of Ic (Ico) nly a
=>Ch	Ico I => Small-Signal
ALL ME	S - MBE

*Combining Time Response with I,V Characteristics in Small-Signal operation 1

•In page 2, we know $I_C = I_S exp \frac{V_o + V_m sinwt}{V_T}$.

*Combining Time Response with I,V Characteristics in Small-Signal operation 2

DI=AV.20 =) Doulgot = AIN Putx 9m

Linear!

*Simple Bipolar Transistor Model

*Small-Signal Model 1

*Small-Signal Model 2

•First, we can expect Small-signal Model like below picture.

·Second, we expect rectangle device for I_B .

*Small-Signal Model 3

·Finally, we can draw Small-Signal Model!

*Small-Signal Model(Note)

•To find small-signal parameters, we must first calculate the bias conditions.

·In small-signal operation, batteries are replaced with a short circuit.

•Notation Large-signal quantities : uppercase $-V_{in}, I_C, V_{BE}, V_{CE} \dots$

Small-signal quantities : lowercase $-v_{in}, i_C, v_{BE}, v_{CE} \dots$

*Early effect 1

·In real bipolar transistors, I_C is not constant according to V_{CE} .

Because *V_{CE}* change depletion region of C-B =>concentration of electrons is more sharply decrease =>Current increase!

*Early effect 2

$$I_{S} = \frac{AqD_{n}n_{i}^{2}}{N_{B}W_{B}}$$

$$V_{CE} \uparrow \Rightarrow W_{B} \downarrow$$

$$=> \text{Diffusion current} \uparrow$$

$$*I_{C} = (I_{S}exp\frac{V_{BE}}{V_{T}})(1 + \frac{V_{CE}}{V_{A}}) \text{ in Large-signal}$$

$$**V_{A} = \text{early voltage}$$

*Official method of Small-Signal model derivation

YouTube Lecture 18

Step 1. Assume the transistor is biased at a certain operating point

Step 2. Apply a voltage change between two terminals and measure the resulting current changes

Step 3. Model the current changes by proper electric devices

*Early effect in small-signal model 1

· Inclusion of early effect IB. TVCE -> VOE + AV (ItVEE)+IS(EX IC+AIC=IS SIC = (Isexp # linear

Using resistance for ΔI_C , ΔV .

*Early effect in small-signal model 2

*Saturation region

·If $V_{CE} < V_{BE}$, we can't get desired value of anything because C-B is forward Bias.

Thank you