Common-Source Stage 2

- Lecture 39
- 1. Input/Output Impedances of Degenerated Common Source Stage
- 2. Biasing Technique
- 3. Self-biased Common Source Stage
- By 황위나

Input/Output Impedances of Degenerated CS Stage

Biasing Technique($\lambda = 0$)

1. Gain when there is a input ...

Gain = $\frac{Vx}{Vin} \frac{Vout}{Vx}$ = $\frac{R1//R2}{(R1//R2) + Rinput} (-g_m R_D)$

Choose $R_1//R_2 >>$ Rinput

2. To stay SATURATION $V_{DD} - I_D R_D > V_{in} - V_{Th}$ $\frac{V_{DD} - V_{in} + V_{Th}}{I_D} > R_D$

3. Apply capacitor between two CS stageTo isolate DC current level from each other

4. In is sensitive to V_{DD} , Temperature , $\mu Cox(W/L)$

5. Reduce sensitivity with degenerated CS stage

$$V_{DD} \frac{R2}{R1+R2} = V_{GS} + I_D R_S$$

Self-biased CS stage

VTh increases \rightarrow ID increases Drain voltage = Gate voltage = VDD - IDRD $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L}$ (VDD - IDRD - VTh)²