
Quiz for Lesson 14,15

Oct. 13, 2015
Electronic Circuits 1
Prof. Woo-Young Choi

Name:	Student ID:

<u>Prob. 1</u>

For the circuit shown below, we are interested only in the small-signal changes in the circuit due to small v_1 . Redraw the circuit using small-signal models for all circuit elements. Assume Q_1 is biased in the forward active region and the Early effect can be ignored.

Prob. 2

Determine numerical values for the circuit parameters used in your small signal model for Q_1 in Prob. 1 at room temperature. Q_1 has collector saturation current of $1 \times 10^{-16} A$, $\beta = 100$. $V_{BE} = 750 mV$. Approximate exp(30) as 1.0×10^{13} .

Prob. 3

Using the small-signal circuit model determined in Prob. 1 and parameter values determined in Prob. 2, determine the numerical value for the small-signal voltage gain, $A_v = v_{out}/v_1$. Use $R_C = 1k\Omega$ and ignore the Early effect.

Prob. 4

An NPN transistor has the collector saturation current of $1x10^{-16}A$, $\beta=100$ and, V_A , the Early voltage, of 20V. Plot I_c vs V_{CE} when $V_{BE}=750\text{mV}$ at room temperature. Assume $V_{CE,sat}$ (the saturation voltage or the value of V_{CE} below which the transistor is not in forward active region) is very small compared to V_A .

<u>Prob. 5</u>

The transistor described in Prob. 4 is used in the circuit shown in Prob. 1. What is V_{out} at room temperature when v_1 = 0, R_C = 1k Ω , and V_{CC} = 3V?

Prob. 6

Draw the small-signal circuit for the transistor described in Prob. 4 and Prob. 5. Give the numerical values for all small-signal circuit parameters.