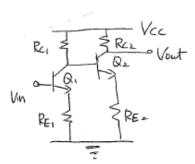
Quiz for Lesson 20 and 21

Nov. 2, 2015 Electronic Circuits 1 Prof. Woo-Young Choi

Name:	Student ID:
Name:	Student ID:

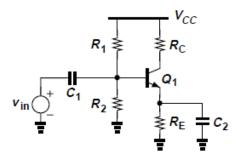

<u>Prob. 1</u>

Determine the input resistance of the following common-emitter amplifier with emitter degeneration. Assume the transistor is in the forward active region and there is no Early effect.

$$V_{\text{in}} \sim V_{\text{out}}$$
 $V_{\text{in}} \sim V_{\text{out}}$

Prob. 2

Determine the small-signal voltage gain for the following cascaded amplifier. Assume the transistors are in the forward active region and the Early effect can be ignored.



Prob. 3

Determine the output resistance of the common-emitter amplifier with emitter degeneration shown in Prob. 1. Assume the transistor is in the forward active region. Include r_0 due to the Early effect.

Prob. 4

Determine the value of R_E so that the collector bias current (DC value of I_C without any input) is 1mA in the circuit shown below at room temperature. Q_1 has I_s of $1\times10^{-16}A$ and $\beta=100$, $V_{CC}=1.5V$, $R_1=6k\Omega$ and $R_2=9k\Omega$. Assume Q_1 is in the forward active region and the base current can be ignored for this problem. Do not consider the Early effect.

Prob. 5

Explain why the common-emitter with emitter degeneration is less sensitive to the supply voltage fluctuation than the common-emitter is.

<u>Prob. 6</u>

 $V_{in}(t)$ is given as $V_{o}sin(2\pi ft)$ where f is large enough so that impedances for C_1 and C_2 can be approximated as zero. What is the small-signal output voltage measured between the collector and the ground for the circuit shown in Prob. 4? Use the conditions given in Prob. 4 along with $R_C = 500\Omega$.