Quiz for Lesson 23 and 24

Nov. 10, 2015 Electronic Circuits 1 Prof. Woo-Young Choi

Name: ______ Student ID: _____

<u>Prob. 1</u>

Determine the expressions for small-signal voltage gain (A_v) , input resistance (R_{in}) and output resistance (R_{out}) for the emitter-follower circuit shown below. Assume the transistor is in the forward active region and the Early voltage is infinitely large.

Prob. 2

Determine the expressions for small-signal voltage gain (A_v , V_{out}/V_{in}), input resistance (R_{in} , Measured between +terminal of V_{in} and ground) and output resistance (R_{out}) for the emitter-follower with source resistance shown below. Assume the transistor is in the forward active region and the Early voltage is infinitely large.

<u>Prob. 3</u>

Determine the numerical value for the small-signal voltage gain of the commonemitter circuit shown below with the following conditions: $\beta = 100$, $I_s = 1 \times 10^{-16}$ A, $V_{BE} = 0.75$ V, $V_T = 25$ mV, $V_{CC} = 2$ V, $R_C = 1$ K Ω , $R_L = 10\Omega$. Ignore the Early effect. Assume the capacitor value is carefully selected so that it is open for bias and short for small-signals. Make reasonable approximations.

Prob. 4

Determine the numerical value for R_E in the following circuit composed of a common-emitter followed by an emitter follower. $V_{BE} = 0.75V$, $V_T = 25mV$, $V_{CC} = 2V$, $R_C = 1K\Omega$, $R_L = 10\Omega$. Both transistors have $\beta = 100$, $I_s = 1 \times 10^{-16}$ A and Q_2 has the same collector current as Q_1 . Ignore the Early effect. Make reasonable approximations.

Prob. 5

Determine the numerical value for the small-signal voltage gain for the circuit shown in Prob. 4. Make reasonable approximations.