Quiz for Lesson 23 and 24

Nov. 10, 2015
Electronic Circuits 1 Prof. Woo-Young Choi
Name: \qquad Student ID: \qquad
Prob. 1
Determine the expressions for small-signal voltage gain (A_{v}), input resistance ($\mathrm{Rin}_{\mathrm{n}}$) and output resistance (Rout) for the emitter-follower circuit shown below. Assume the transistor is in the forward active region and the Early voltage is infinitely large.

Prob. 2

Determine the expressions for small-signal voltage gain ($A_{v}, V_{\text {out }} / V_{\text {in }}$), input resistance (Rin, Measured between +terminal of $\mathrm{V}_{\text {in }}$ and ground) and output resistance (Rout) for the emitter-follower with source resistance shown below. Assume the transistor is in the forward active region and the Early voltage is infinitely large.

Prob. 3

Determine the numerical value for the small-signal voltage gain of the commonemitter circuit shown below with the following conditions: $\beta=100, I_{s}=1 \times 10^{-16} \mathrm{~A}, \mathrm{~V}_{\mathrm{BE}}$ $=0.75 \mathrm{~V}, \mathrm{~V}_{T}=25 \mathrm{mV}, \mathrm{V}_{\mathrm{Cc}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{L}}=10 \Omega$. Ignore the Early effect. Assume the capacitor value is carefully selected so that it is open for bias and short for small-signals. Make reasonable approximations.

Prob. 4
Determine the numerical value for R_{E} in the following circuit composed of a common-emitter followed by an emitter follower. $\mathrm{V}_{\mathrm{BE}}=0.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV}, \mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$, $R_{C}=1 \mathrm{~K} \Omega, R_{L}=10 \Omega$. Both transistors have $\beta=100, I_{S}=1 \times 10^{-16} \mathrm{~A}$ and Q_{2} has the same collector current as Q1. Ignore the Early effect. Make reasonable approximations.

Prob. 5
Determine the numerical value for the small-signal voltage gain for the circuit shown in Prob. 4.Make reasonable approximations.

