Quiz for Lesson 28 and 29

Nov. 19, 2015 Electronic Circuits 1 Prof. Woo-Young Choi

Name: ______ Student ID: _____

<u>Prob. 1</u>

Determine the small signal model of the following circuit when a small-signal voltage input (v_{in}) is added between 1V source and the gate terminal. Use $\mu_n C_{ox} = 100\mu$ A/V², V_{TH} = 0.4V, and $\lambda = 0.1$ V⁻¹. Provide numerical values for your small-signal circuit parameters. Include the channel-length modulation effect only for the small-signal analysis, not for the large-signal analysis.

$$V_{DD} = 1.8 V$$

$$R_{D} \ge 5 k\Omega$$

$$I_{D}$$

$$X$$

$$M_{1} = \frac{2}{0.18}$$

<u>Prob. 2</u>

Plot I_D vs V_{SD} for the PMOS shown below with $\mu_p C_{ox} = 30\mu A/V^2$, (W/L)=20/0.18, V_{SG}= 1V, V_{TH} = -0.4V, $\lambda = 0$ V. Give numerical values for the voltage where the transistor becomes saturated and the saturated drain current.

<u>Prob. 3</u>

Draw the structure of the following CMOS circuit realized on a P-type Si substrate. In your drawing, clearly indicate where V_{in} , V_{out} , V_{DD} , and the ground terminals are.

Prob. 4

In the above CMOS circuit, both DC input (V_{in}) and DC output (V_{OUT}) is half of V_{DD} and both transistors are in saturation with the same drain currents. Determine the condition required for (W/L)₁ and (W/L)₂. Assume $|V_{TH,1}| = |V_{TH,2}|$ and $\lambda_1 = \lambda_2$, and $\mu_n = 3\mu_p$.

<u>Prob. 5</u>

Draw the small-signal model for the circuit shown in Prob. 4 with the conditions given in Prob. 5 when a small-signal voltage input is added in series with the DC bias input. Simplify your small-signal circuit as much as possible.