Quiz for Lesson 30

Nov. 26, 2015 Electronic Circuits 1 Prof. Woo-Young Choi

Name: ______ Student ID: _____

<u>Prob. 1</u>

(a) Determine the bias voltage V_{GS} required for the following CS amplifier to have the small-signal voltage gain of -10. (b) What is the minimum voltage for V_{DD} that can maintain this voltage gain? Use $\mu_n C_{ox} = 200\mu A/V^2$, (W/L)=20/0.2, V_{TH} = 0.4V, λ = 0.

$$V_{DD} = 1.8$$

$$R_{D} \ge 2 k\Omega$$

$$V_{in} \circ V_{out}$$

$$M_{1}$$

v

Prob. 2

Determine the drain current for M₁ and M₂ so that the following CS amplifier has the small-signal voltage gain of -20 assuming both transistors are in saturation. M₁ has $\mu_n C_{ox} = 200\mu A/V^2$, (W/L)=20/0.2, V_{TH} = 0.4V, $\lambda = 0.1 V^{-1}$, and M₂ has $\mu_p C_{ox} = (200/3)\mu A/V^2$, (W/L)=60/0.2, V_{TH} = -0.4V, $\lambda = 0.1 V^{-1}$. Consider the channel modulation effect only for the small-signal analysis and not for the large signal analysis.

Prob. 3

Determine V_{GS1} , V_b that provide the drain current determined in Prob. 2 using the same conditions given in Prob. 2.