Quiz for Lesson 31 and 32

Dec. 1, 2015
Electronic Circuits 1 Prof. Woo-Young Choi
Name: \qquad Student ID: \qquad

Prob. 1

Determine the small-signal voltage gain of the following CS with degeneration amplifier. Assume both transistors are in saturation. M_{1} has transconductance of $\mathrm{g}_{\mathrm{m} 1}$ and $\lambda_{1}=0 . \mathrm{M}_{2}$ has transconductance of $\mathrm{g}_{\mathrm{m} 2}$ and $\lambda_{2}=0$.

Prob. 2

Now, assume M_{1} has $\lambda_{1}=0$ but M_{2} has $\lambda_{2}>0$ with r_{02}. Determine the small-signal voltage gain of the circuit shown above.

Prob. 3

Now, assume M_{1} has $\lambda_{1}>0$ with r_{02} and M_{2} has $\lambda_{2}>0$ with ro2. Determine the output resistance for the circuit shown in Prob. 1.

Prob. 4

Consider the CG amplifier shown below where $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=1 \mathrm{k} \Omega, \mathrm{R}_{3}=500 \Omega, \mathrm{R}_{\mathrm{s}}=10 \Omega$, M_{1} has $u_{n} C_{0 x}=100 \mu A / V^{2}, W / L=20, V_{T H}=0.5 V, \lambda=0$. Select values for R_{1} and R_{2} so that the bias drain current is 1 mA .

Prob. 5

What is the numerical value for the input resistance seen to the right of node X ?

Prob. 6

What is the numerical value for the small-signal voltage gain?

