Quiz for Lesson 3,4

Sept. 8, 2015 Electronic Circuits 1 Prof. Woo-Young Choi

Name: _____ Student ID: _____

Prob. 1

Determine the unit for each of following quantities. Give your answers in terms of V (Volt), cm, sec. and C (Coulomb).

- (a) Electric field
- (b) Current density
- (c) resistivity
- (d) Diffusion constant

Prob. 2

A piece of Si shown below is uniformly doped with 10^{15} cm⁻³ B atoms at room temperature. What is its resistance in Ohms? Assume the electron mobility in Si is 1500 cm² / (V x sec) and the hole mobility is 500 cm² / (V x sec). Use q = 1.6×10^{-19} C. L = 100μ m, h = 5μ m and w = 10μ m.

<u>Prob. 3</u>

What is the expression for the total current density in a semiconductor? Consider both diffusion and drift currents.

<u>Prob. 4</u>

When P-side and N-side in a PN junction are externally connected by a wire with no resistance, there is no current flowing through the wire. Does this mean there is no current flow at all inside the PN junction? Give a brief explanation.

<u>Prob. 5</u>

A PN junction is made up of 10^{16} cm⁻³ P-type Si and 10^{16} cm⁻³ N-type Si. Which side (P or N) has the higher potential? Briefly explain why.

<u>Prob. 6</u>

Determine the built-in potential for the PN junction given in Prob. 2 at room temperature. Use $V_T = 25$ mV and ln(10) = 2.3.