## Test 1

Sept. 24, 2015
Electronic Circuits 1 Prof. Woo-Young Choi

## Prob. 1(20)

Consider a PN junction diode circuit shown below.

(a)(10) Determine the P -side resistance and the N -side resistance in ohm. Assume electron mobility is $1350 \mathrm{~cm}^{2} / V$-sec and hole mobility is $400 \mathrm{~cm}^{2} / V-\mathrm{sec}$.
(b)(10) Plot $I_{D}$ vs $V_{i n}$. Model the $P N$ junction diode with a constant voltage source $\left(V_{D, o n}=0.8 V\right.$ ) and resistors for $P$-region and $N$-region whose values are determined in (a). In your plot, clearly indicate the value of the slope and where the slope changes.

## Prob. 2(20)

Two PN junction diodes are identical except one diode $\left(D_{1}\right)$ is twice as large as the other diode $\left(\mathrm{D}_{2}\right)$. Two diodes are placed on a board and connected in series to a constant current source. When the voltage across each diode is measured, $V_{D 2}$ is 20 mV larger than $V_{D 1}$. What is the temperature of the board? Assume $\mathrm{I}_{\mathrm{in}}$ is positive and much larger than the diode saturation current and the temperatures of two diodes are same as that of the board. Use $V_{T}=25 \mathrm{mV}$ at $T=300 \mathrm{~K}$.


## Prob. 3(20)

Plot $\mathrm{V}_{\text {out }}$ vs $\mathrm{V}_{\text {in }}$ for following PN junction circuits. Use the constant voltage drop model with $\mathrm{V}_{\mathrm{D}, \mathrm{on}}$. Clearly indicate the value of the slope and where the slope changes.
(a)

(b)


## Prob. 4(20)

In the circuit shown below, the switch is closed at $t=0$. Assuming the capacitor has no initial charges, sketch the capacitor voltage $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ as a function of time. Your sketch should include any constant voltage values as well as time constants for exponential curves. Use the ideal diode model.


Prob. 5(20)
A Zener diode can turn on even in the reverse bias if the reverse bias voltage reaches a certain value $\left(V_{z}\right)$. With the forward bias voltage, it is just like the PN junction diode we discussed in the class. The current-voltage characteristics is shown along with its circuit symbol.

## Zener Dode IM Cfumateristos Curve



Plot $\mathrm{V}_{\text {out }} \mathrm{Vs} \mathrm{V}_{\text {in }}$ for the following circuit. Use $\mathrm{V}_{\mathrm{D}, \text { on,forward }}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{z}}=-10 \mathrm{~V}$.


