Nov. 12, 2015 Electronic Circuits 1 Prof. Woo-Young Choi ## Prob. 1 (20) Determine the ratio of I_1 and I_2 (I_2 / I_1) in each of following circuits. Assume all BJT transistors in the forward active region and have the same value of β . Ignore the Early effect. (b)(10) ## Prob. 2(20) We want to determine input resistances of an NPN transistor in the forward active region in various conditions. Express your answers in terms of small-signal parameters and β . (a)(5) Determine $R_{in,B}$, $R_{in,C}$, $R_{in,E}$ in the following circuits without the Early effect. - (b)(5) Do the same as in (a) with the Early effect using r_0 . - (c)(5) Determine $R_{\text{in,B}}$, $R_{\text{in,C}}$, $R_{\text{in,E}}$ when some resistors are added as shown below. Do not consider the Early effect. (d)(5) Determine $R_{in,C}$ in Prob. 1(c) with the Early effect using r_{o} . ## Prob. 3(30) Consider the following amplifier in which CE stage is cascaded with CB stage. Assume the bias is achieved with an ideal current (I_1) and a voltage source (V_{b1}) so that both transistors are in the forward active region and have the identical bias condition. The Early effect for both transistors can be modeled with the same resistance r_0 . Determine the small-signal voltage gain (v_{out}/v_{in}) in the following steps. $$V_{\text{b1}} \sim V_{\text{out}}$$ $V_{\text{in}} \sim Q_1$ - (a)(5) Determine the input resistance of the CB stage in the above circuit. - (b)(5) Determine the voltage gain of the CE stage (v_X/v_{in}) , where v_X is the voltage of Q_1 emitter. - (c)(5) Determine the voltage gain of the CB stage (v_{out}/v_X) . - (d)(5) Determine the total voltage gain $v_{\text{out}}/v_{\text{in}}.$ - (e)(10) Determine output resistance of the above amplifier. ## Prob. 4(30) We want to design the bias circuit for the following EF circuit so that it can deliver voltage gain of 0.8 to a load having $R_L = 50~\Omega$. The transistor has $I_s = 6 \times 10^{-16} A$, $\beta = 100$, and a large Early voltage so that the Early effect can be ignored. Assume $V_T = 25 \text{mV}$ and the capacitors are selected so that they are open for bias and short for small signals. (a)(10) Assuming R_{E} is much larger than R_{L} , determine the collect current that provides the desired gain. (b)(10) What is required value for R_1 ? Assume $R_E = 250 \Omega$. (c)(10) Estimate the minimum value of C_1 that allows delivery of input signals into the amplifier. Assume the lowest frequency for input signals is 100MHz. Use $R_E=250~\Omega$.