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Photodetection: Absorption => Current Generation

h Currents

Materials for photodetection: Eg < h
Various methods for generating currents with photo-generated carriers:
photoconductors, photodiodes, avalanche photodiodes
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- Photodetection for indirect bandgap materials?
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Unlike emission, absorption in indirect bandgap semiconductor is highly probable
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Photoconductors:

- Very easy to make
- Large gain 
- But slow (speed limited by 
- Can have significant dark currents
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Faster, less dark-current photodetectors?

B-

h+

p n

As+

e–

E (x)

x
0

–Eo

M

Wn–Wp

PN junction in reverse bias

photodiode

- No significant current flow=> small dark currents

- Photo-generated carriers are removed
by built-in field in depletion region 
(space charge region)
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- Photo-generated carriers drift into P (holes)
and N (electrons) regions generating currents 
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- One photon creates a pair of electron and hole

- Problem: depletion region is very thin (< 1 m)
 int is very small

=> Use PIN structure
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Avalanche Photodiode (APD)
(avalanche: a large mass of snow, ice, earth, rock, or other material in 
swift motion down a mountainside)

Achieve gain by multiplying electrons and/or holes. 

Impact Ionization:  Under high E-field, electrons and holes can have 
sufficiently high kinetic energies breaking bonds and creating new e-h pairs.

PD with gain?
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It is preferred only one type of carrier 
(either electron or hole) causes impact 
Ionization

: ratio of ionization coefficients 
(= hole/electron) 
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Metal-Semiconductor-Metal (MSM) Ge PD
– Low responsivity due to metal shadow (surface illuminated type)
– Large dark current (low schottky barrier, quality of Ge grown on Si)
– Electrode distance  photodetection bandwidth 

Type Responsivity OE bandwidth Dark current Ge thickness

WG MSM 0.14 A/W @ -1V 40 GHz @ -2V 90 uA @ -1V 100 nm

Ref) 2010, OE, CMOS-integrated high-speed MSM germanium waveguide photodetector, IBM
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Vertical PIN Ge PD
– Thickness of intrinsic Ge: tradeoff between transit time and junction cap
– RC time and transit time  photodetection bandwidth

Ref) 2015, JLT, High-responsivity low-voltage 28-Gb/s Ge p-i-n photodetector with silicon contacts, 
IMEC

Type Responsivity OE bandwidth Dark current Ge thickness

WG Vertical PIN 0.5 A/W @ -1V 50 GHz @ -1V 50 nA @ -1V 400 nm

E-field
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Lateral PIN Ge PD
– Lower minority carrier diffusion length  increase photodetection bandwidth

Ref) 2015, OE, High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode, 
IHP 

Type Responsivity OE bandwidth Dark current Ge thickness

WG Lateral PIN > 1 A/W @ -1V > 70 GHz @ -1V 100 nA @ -1V 500 nm
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Separate-Absorption-Charge-Multiplication (SACM) PD (Ge/Si APD) 
– Si’s low noise property & Ge’s strong absorption near 1.55 μm wavelength
– Low keff (k ~ 0.09, ratio of ionization coefficients of electrons and holes)
 high gain-bandwidth products, low noise

– Need large reverse bias for avalanche  high dark current

Ref) 2013, OFC, High speed waveguide-integrated Ge/Si avalanche photodetector, IME

Type Responsivity OE bandwidth Dark current Ge thickness

WG SACM APD 22 A/W @ -27V 20 GHz @ -27V 10 μA @ -27V 1 μm

Bias ↑


