Photodetection: Absorption => Current Generation

Materials for photodetection: $E_g < h\nu$ Various methods for generating currents with photo-generated carriers: photoconductors, photodiodes, avalanche photodiodes

- Sharp decrease in α for $\lambda > E_g$
- Photodetection for indirect bandgap materials?

- Photodetection for indirect bandgap materials?

Unlike emission, absorption in indirect bandgap semiconductor is highly probable

Photodetection efficiency

$$R ext{ (Responsivity)} = \frac{I}{P}$$

$$\eta$$
 (Quantum Efficiency) = $\frac{I/q}{P/hv}$

$$R = \eta \cdot \frac{q}{h\nu}$$
 $h\nu[eV] = \frac{1.24}{\lambda[\mu m]}$

$$R = \eta \cdot q[C] \cdot \frac{\lambda}{1.24[eV]} = \eta \cdot \frac{\lambda}{1.24}[1/V]$$

Responsivity (A/W)

Photoconductor

R = ?

Without light,

Conductivity: $\sigma = q\mu_e n + q\mu_h p$

 $(\mu_{e,h}$: electron, hole mobility)

$$J = \sigma E$$
 $I = wd\sigma \frac{V}{L}$

With light,

$$n = n_0 + \Delta n$$
, $p = p_0 + \Delta p$

$$\sigma + \Delta \sigma = q \mu_e (n + \Delta n) + q \mu_h (p_0 + \Delta p)$$

$$\Delta I = wd \cdot \Delta \sigma \cdot \frac{V}{L} = wd \cdot (q\mu_e \Delta n + q\mu_h \Delta p) \cdot \frac{V}{L}$$

With light,

$$n = n_0 + \Delta n, \ p = p_0 + \Delta p$$

$$\sigma + \Delta \sigma = q\mu_e (n + \Delta n) + q\mu_h (p_0 + \Delta p)$$

$$\Delta I = wd\Delta \sigma \frac{V}{L} = wd (q\mu_e \Delta n + q\mu_h \Delta p) \frac{V}{L}$$

$$\Delta n = \Delta p = \eta_{\text{int}} \cdot \frac{P}{h\nu} \cdot \frac{\tau}{wLd}$$
 (Assume $\Delta n, \Delta p$ are uniform)

$$\Delta I = wd\Delta\sigma\frac{V}{L} = wd\cdot q\left(\mu_e + \mu_h\right)\cdot\eta_{\mathrm{int}}\frac{P}{h\nu}\frac{\tau}{wLd}\cdot\frac{V}{L} = q\left(\mu_e + \mu_h\right)\cdot\eta_{\mathrm{int}}\cdot\frac{P}{h\nu}\cdot\frac{\tau}{L^2}\cdot V$$

$$R = \frac{I}{P} \simeq \frac{\Delta I}{P}$$
 (Assume dark current is small) $= \frac{q}{hv} (\mu_e + \mu_h) \cdot \eta_{\text{int}} \cdot \frac{\tau}{L^2} \cdot V$

$$R = G \cdot \eta_{\text{int}} \frac{q}{h\nu}$$
 where $G = (\mu_e + \mu_h) \cdot \frac{\tau}{L^2} \cdot V$

Gain:
$$G = (\mu_e + \mu_h) \cdot \frac{\tau}{L^2} \cdot V$$

Assuming
$$\mu_e \gg \mu_h$$
, $G = \mu_e \cdot \frac{\tau}{L^2} \cdot V = \frac{\tau}{L^2/\mu_e \cdot V} = \frac{\tau}{\tau_e}$

$$\tau_e = \frac{L}{\mu_e \cdot V} = \frac{L}{\mu_e \cdot E} = \frac{L}{\nu}; \quad \text{Time for travelling distance L}$$

 $\tau >> \tau_e ==>$ electrons circulate many time before recombination

With μ_h

$$G = \frac{\tau}{L^2 / (\mu_e + \mu_h) \cdot V} = \frac{\tau}{\tau_{eh}}$$

$$\tau_{eh} = \frac{L}{(\mu_e + \mu_h) \cdot \frac{V}{L}} = \frac{L}{(\mu_e + \mu_h) \cdot E} = \frac{L}{v_e + v_h} = \frac{1}{\frac{v_e + v_h}{L}} = \frac{1}{\frac{1}{\tau_e} + \frac{1}{\tau_h}} = \frac{\tau_e \cdot \tau_h}{(\tau_e + \tau_h)}$$

Photoconductors:

- Very easy to make
- Large gain
- But slow (speed limited by τ)
- Can have significant dark currents

Faster, less dark-current photodetectors? photodiode

PN junction in reverse bias

 Photo-generated carriers are removed by built-in field in depletion region (space charge region)

Photo-generated carriers drift into P (holes)
 and N (electrons) regions generating currents

$$I = \eta_{\rm int} \frac{P}{h\nu} q$$

- One photon creates a pair of electron and hole
- Problem: depletion region is very thin (< 1 μm)
 → η_{int} is very small
 - => Use PIN structure

PIN Photodiode

PD with gain?

Avalanche Photodiode (APD)

(avalanche: a large mass of snow, ice, earth, rock, or other material in swift motion down a mountainside)

Achieve gain by multiplying electrons and/or holes.

Impact Ionization: Under high E-field, electrons and holes can have sufficiently high kinetic energies breaking bonds and creating new e-h pairs.

It is preferred only one type of carrier (either electron or hole) causes impact lonization

κ: ratio of ionization coefficients (= hole/electron)

- Metal-Semiconductor-Metal (MSM) Ge PD
 - Low responsivity due to metal shadow (surface illuminated type)
 - Large dark current (low schottky barrier, quality of Ge grown on Si)
 - Electrode distance → photodetection bandwidth

Type	Responsivity	OE bandwidth	Dark current	Ge thickness
WG MSM	0.14 A/W @ -1V	40 GHz @ −2V	90 uA @ −1V	100 nm

Ref) 2010, OE, CMOS-integrated high-speed MSM germanium waveguide photodetector, IBM

Vertical PIN Ge PD

- Thickness of intrinsic Ge: tradeoff between transit time and junction cap
- RC time and transit time → photodetection bandwidth

Type	Responsivity	OE bandwidth	Dark current	Ge thickness
WG Vertical PIN	0.5 A/W @ -1V	50 GHz @ −1V	50 nA @ −1V	400 nm

Ref) 2015, JLT, High-responsivity low-voltage 28-Gb/s Ge p-i-n photodetector with silicon contacts, IMEC

Lateral PIN Ge PD

Lower minority carrier diffusion length → increase photodetection bandwidth

Type	Responsivity	OE bandwidth	Dark current	Ge thickness
WG Lateral PIN	> 1 A/W @ -1V	> 70 GHz @ -1V	100 nA @ -1V	500 nm

Ref) 2015, OE, High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode, IHP

- Separate-Absorption-Charge-Multiplication (SACM) PD (Ge/Si APD)
 - Si's low noise property & Ge's strong absorption near 1.55 μm wavelength
 - Low k_{eff} ($k \sim 0.09$, ratio of ionization coefficients of electrons and holes)
 - → high gain-bandwidth products, low noise
 - Need large reverse bias for avalanche → high dark current

Type	Responsivity	OE bandwidth	Dark current	Ge thickness
WG SACM APD	22 A/W @ -27V	20 GHz @ −27V	10 μA @ -27V	1 μm

Ref) 2013, OFC, High speed waveguide-integrated Ge/Si avalanche photodetector, IME