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— Integrated heaters
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Silicon Photonics

Modulator

@ Growing bandwidth needs: electronic links =» optical links

@ Low-cost high volume components which can be integrated with
electronics =» Silicon photonics

@ Waveguide, waveguide crossing, MZM, AWG, PD
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Advantages of Silicon Photonics

Grating Germanium Channel Si modulator
coupler photodetector waveguide or rib waveguide
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@ High index contrast between silicon and silicon-on insulator (SOI)
— Small footprint, high energy-efficiency

@ 1.5um radius ring resonator has been reported

Silicon Photonics

%ﬁgmm h



Importance of Thermal Control
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@ Microring based devices = low-cost WDM communication

@ Insertion loss, cross-talk, footprint, modulation-bandwidth, linearity
should be considered for optimization

@ Thermal sensitivity is another important issue =» resonance shift
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Thermal effects on micro-ring resonator

@ Sensitive to temperature
— High thermo-optic (TO) coefficient of silicon (1.86x10-4/K)
— Wavelength selectivity of microring resonators

@ Resonance wavelength shift respect to temperature
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@ Each terms have wavelength dependence

@ SiO, and Si substrate effect is omitted
— TO coefficient of SiO,: 1x10~/K
— TO coefficient of Si substrate: 2.6x10-¢/K
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Resolution for Temperature Sensitivity

@ Solutions that reduce thermal dependence (athermal devices)
— No additional active power

— Difficult to fabricate (either through incorporation of non-CMOS material or
additional photonics structure)

— Laser source: fixed wavelength & stable throughout optical link

@ Solutions that actively maintain local temperature (control based circuit)
— Typical control-based systems needed ( heaters, PDs etc.)
— Additional active power consumption
— Laser source: no constraints are needed
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Athermal Devices

@ Main idea: decrease temperature-dependence of the microring resonator

@ Techniques
— Using materials with negative thermo-optic coefficients in WG claddings
— Embedment of microring in thermally balanced interferometer
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Using Negative Thermo-Optic Materials

@ Goal: zero thermo-optic coefficient for waveguide
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I': modal confinement factors

@ Positive thermo-optic coefficient
— Core (silicon), substrate (silicon oxide)

@ Negative thermo-optic coefficient
— Cladding

@ High I'y,44ing NEEdEd
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Polymer-Cladding on Narrowed Waveguide
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@ Narrow WG make optical mode to distributed more in cladding
@ Temperature dependent resonance shift (TDWS): -5 pm/K
@ Recent work: 0.2pm/K for TDWS

|
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Photosensitive Material

@ Strict requirement on waveguide dimensions (Polymer-cladding)

=» difficult to achieve desired athermalization
oRiPMMA [0 g

200014 20.02kV X45.8K.

0.5um

As,S;: photosensitive layer

EP: negative thermo-optic polymer DR1/PMMA: Disperse Red 1-doped poly(methyl methacrylate)

@ Trim thermo-optic coefficient after fabrication

@ Vulnerability

— High temperature(exist in CMOS-production cycles), chemical instability, UV
aging and poor mechanical characteristics
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CMOS-Compatible Cladding Material

@ Titanium dioxide (TiO,) for negative thermo-optic coefficient cladding
@ CMOS compatible material with similar TO coefficient with Si (~1.8x10-4/K)
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Summary of Negative TO Materials

@ Solutions
— Polymer material for cladding
— Photosensitive material to tune the TO after fabrication
— TiO, for cladding material (CMOS compatible)

@ Disadvantages
— Fabrication difficulty
— Reduction in modal confinement of the core
* loss on straight and bent configuration
=>» negative impact on footprint & Q-factor
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Using Interferometric Structure

@ Si MZI can be athermalized by different optical mode in each arm
— Different width for each waveguide arm =» different effective TO coefficient
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@ Thermal sensitivity of microring can be compensated by MZI

@ Optical resonance deformed across temperature range
— Different phase shift dependence between MZI (linear), microring (nonlinear)
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Athermal Electro-Optic Modulator Using MZI
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Summary of Athermalization with MZI

@ Advantages

— Does not require incorporation of new layers or materials in fabrication of Si
Photonic structure

— Easy to integrated using current CMOS-fabrication techniques

@ Disadvantages
— Sensitivity to fabrication tolerance
— Increases footprint of microring structure
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Control-Based Solutions

Low-speed High-speed

Thermal
fluctuations
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@ Maintain local temperature by integrated heater localized to microring
resonator

@ Major components
— Integrated heater: controlling local temperature
— Control-system: driving integrated heater
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Integrated Heaters

@ Integrated heaters are resistive elements
— Nichrome, titanium or doped silicon materials
@ Integrated heater metrics
— Tuning efficiency
« mW/nm: increases with microring size
« mMW/FSR: remain relatively constant with size (decrease in FSR)

— Tuning speed
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Direct Heating Microring Resonator

@ Available for carrier-injection microring modulator
— Adjust bias current of the diode junction
— First control system for thermally stabilizing microring resonator
— Limited temperature tuning range
— Bad effects on optical modulation

| Waveguide
2 um p-Region (450-nm x 260-nm)
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@ Separation between high-speed electrical operation and low-speed
thermal stabilization is needed
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Microring Resonator with Separated Heater
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@ Locating integrated heater closer = tuning efficiency 1, scattering loss 1
@ Best performance: ~42mW/FSR, 14us

@ For better tuning efficiency improved thermal isolator in microring is
needed
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Adiabatic Microring Resonator

Adiabatic Transition

Highly-Doped Silicon
lating Leads

@ Microring resonator with interior connected heater
@ ~20mWI/FSR tuning power, 1us tuning speed

@ Adiabatic microring modulator can be fabricated

— Error-free 10Gb/s modulation, 60K temperature range, comparable tuning
efficiency
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Thermal Isolation Method

@ Problem
— Heat dissipated into the surrounding oxide and substrate
1
A 0.5 um il Heater B 0.5 um lum __ Heater
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3 HmI Oxide 3 me Oxide 6.5 um

+—>

Si Air
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@ Air trench increase thermal isolation

@ Figure A: 21mW/FSR tuning power, <10us for tuning time

@ Figure B: 2.4mW/FSR, 4.9mW/FSR (topside silicon undercut-etching)
3.9mW/FSR (backside substrate etching)

@ High thermal time constant (~170pus)

@ Sensitive to optical bistablility effects

B |
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Control-Based Circuit System

@ Mechanism

Sensing Denote Close-looped Adjust
thermal drift error signal feedback controller integrated heater

@ Performance standard

— Low-cost, energy efficiency

— No additional photonic structures

— Compatible with WDM

— Implementable for passive or active microring modulators
@ Method

— Using signal optical power

— Using Bit-error-rate (BER)

— Using dithering signal
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Thermal Variation Monitoring Method

@ Utilizing signal optical power
— Sensing laser wavelength by monitoring mean modulated power

— By using drop port = eliminates power tap, yields WDM compatibility
— Susceptible to fluctuations in laser power
— Not applicable to passive resonator

@ Directly Monitoring BER
— Wavelength locking and thermal stabilization over 32K
— Keep high guality of generated data by monitoring
— Need complex circuit and high speed receivers =» high power consumption
— Only applicable for modulators not switches or filters
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Thermal Variation Monitoring Method

@ Dithering Signal
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— Mixing driving dithering signal and modulated optical signal
— In-, or out-of-phase depends on which side of the resonance the laser offset
— Reduction of extinction ratio by dithering is negligible
— Advantages
« Simple circuit, immune to laser power fluctuation, compatible with WDM
» Applicable to microring modulators
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Conclusion

@ Athermal device solutions
— Using negative TO coefficient for WG cladding and integration with MZI
— Zero-power consumption
— Difficult to fabricate and incorporate with non-CMOS materials
— In full system analysis, power to stabilize laser source is needed

@ Control-based solutions
— Integrated heater and control circuit is needed
— Wavelength-lock & thermally stabilized both passive and active is possible
— Additional active power consumption

Silicon Photonics xncwaugwamp




Kishore Padmaraju* and Keren Bergman

Resolving the thermal challenges for silicon
microring resonator devices

slayiers5@gmail.com

High-Speed Circuits & Systems Lab.

Dept. of Electrical and Electronic Engineering
Yonsei University




