

Kishore Padmaraju* and Keren Bergman

Resolving the thermal challenges for silicon microring resonator devices

MyungJin Shin 1885 High-Speed Circuits & Systems Lab. Dept. of Electrical and Electronic Engineering Yonsei University

Outline

- Thermal effects on microring resonator based devices
- Athermal devices
 - Negative thermo-optic materials
 - Interferometric structure
- Control-based solution
 - Integrated heaters
 - Methods for control-based solutions
- Conclusion

- Waveguide, waveguide crossing, MZM, AWG, PD

Advantages of Silicon Photonics

High index contrast between silicon and silicon-on insulator (SOI)

- Small footprint, high energy-efficiency
- 1.5µm radius ring resonator has been reported

Importance of Thermal Control

Microring based devices low-cost WDM communication

- Insertion loss, cross-talk, footprint, modulation-bandwidth, linearity should be considered for optimization
- Thermal sensitivity is another important issue \rightarrow resonance shift

Thermal effects on micro-ring resonator

- Sensitive to temperature
 - High thermo-optic (TO) coefficient of silicon (1.86x10⁻⁴/K)
 - Wavelength selectivity of microring resonators
- Resonance wavelength shift respect to temperature

$$\frac{d\lambda}{dT} = \frac{\delta n_{eff}}{\delta T} \frac{\lambda_0}{n_g}$$

- Each terms have wavelength dependence
- SiO₂ and Si substrate effect is omitted
 - TO coefficient of SiO₂: 1x10⁻⁵/K
 - TO coefficient of Si substrate: 2.6x10⁻⁶/K

Resolution for Temperature Sensitivity

- Solutions that reduce thermal dependence (athermal devices)
 - No additional active power
 - Difficult to fabricate (either through incorporation of non-CMOS material or additional photonics structure)
 - Laser source: fixed wavelength & stable throughout optical link

- Solutions that actively maintain local temperature (control based circuit)
 - Typical control-based systems needed (heaters, PDs etc.)
 - Additional active power consumption
 - Laser source: no constraints are needed

Athermal Devices

- Main idea: decrease temperature-dependence of the microring resonator
- Techniques
 - Using materials with negative thermo-optic coefficients in WG claddings
 - Embedment of microring in thermally balanced interferometer

Using Negative Thermo-Optic Materials

Goal: zero thermo-optic coefficient for waveguide

 Γ : modal confinement factors

- Positive thermo-optic coefficient
 - Core (silicon), substrate (silicon oxide)
- Negative thermo-optic coefficient
 - Cladding
- High Γ_{cladding} needed

Polymer-Cladding on Narrowed Waveguide

- Narrow WG make optical mode to distributed more in cladding
- Temperature dependent resonance shift (TDWS): -5 pm/K
- Recent work: 0.2pm/K for TDWS

Photosensitive Material

Strict requirement on waveguide dimensions (Polymer-cladding)

→ difficult to achieve desired athermalization

 As_2S_3 : photosensitive layer EP: negative thermo-optic polymer

DR1/PMMA: Disperse Red 1-doped poly(methyl methacrylate)

- Trim thermo-optic coefficient after fabrication
- Vulnerability
 - High temperature(exist in CMOS-production cycles), chemical instability, UV aging and poor mechanical characteristics

CMOS-Compatible Cladding Material

- Titanium dioxide (TiO₂) for negative thermo-optic coefficient cladding
- CMOS compatible material with similar TO coefficient with Si (~1.8x10⁻⁴/K)

TDWS<2pm/K over range of 5K</p>

Summary of Negative TO Materials

Solutions

- Polymer material for cladding
- Photosensitive material to tune the TO after fabrication
- TiO₂ for cladding material (CMOS compatible)
- Disadvantages
 - Fabrication difficulty
 - Reduction in modal confinement of the core
 - loss on straight and bent configuration
 - ➔ negative impact on footprint & Q-factor

Using Interferometric Structure

- Si MZI can be athermalized by different optical mode in each arm
 - Different width for each waveguide arm \rightarrow different effective TO coefficient

- Thermal sensitivity of microring can be compensated by MZI
- Optical resonance deformed across temperature range
 - Different phase shift dependence between MZI (linear), microring (nonlinear)

Athermal Electro-Optic Modulator Using MZI

- Different waveguide width
 - Upper arm: 200nm
 - Lower arm: 450nm
- Measured over 35°C (two temperature period)
- Periodic change in eye shape for different temperature
 - Phase shift difference between MZI and microring

Summary of Athermalization with MZI

Advantages

- Does not require incorporation of new layers or materials in fabrication of Si Photonic structure
- Easy to integrated using current CMOS-fabrication techniques
- Disadvantages
 - Sensitivity to fabrication tolerance
 - Increases footprint of microring structure

Control-Based Solutions

- Maintain local temperature by integrated heater localized to microring resonator
- Major components
 - Integrated heater: controlling local temperature
 - Control-system: driving integrated heater

Integrated Heaters

- Integrated heaters are resistive elements
 - Nichrome, titanium or doped silicon materials
- Integrated heater metrics
 - Tuning efficiency
 - mW/nm: increases with microring size
 - mW/FSR: remain relatively constant with size (decrease in FSR)
 - Tuning speed

Direct Heating Microring Resonator

- Available for carrier-injection microring modulator
 - Adjust bias current of the diode junction
 - First control system for thermally stabilizing microring resonator
 - Limited temperature tuning range
 - Bad effects on optical modulation

Separation between high-speed electrical operation and low-speed thermal stabilization is needed

Microring Resonator with Separated Heater

- Locating integrated heater closer \rightarrow tuning efficiency \uparrow , scattering loss \uparrow
- Best performance: ~42mW/FSR, 14µs
- For better tuning efficiency improved thermal isolator in microring is needed

Adiabatic Microring Resonator

- Microring resonator with interior connected heater
- ~20mW/FSR tuning power, 1µs tuning speed
- Adiabatic microring modulator can be fabricated
 - Error-free 10Gb/s modulation, 60K temperature range, comparable tuning efficiency

Thermal Isolation Method

Problem

Heat dissipated into the surrounding oxide and substrate

- Air trench increase thermal isolation
- Figure A: 21mW/FSR tuning power, <10µs for tuning time</p>
- Figure B: 2.4mW/FSR, 4.9mW/FSR (topside silicon undercut-etching)
 3.9mW/FSR (backside substrate etching)
- High thermal time constant (~170µs)
- Sensitive to optical bistability effects

Control-Based Circuit System

Mechanism

- Performance standard
 - Low-cost, energy efficiency
 - No additional photonic structures
 - Compatible with WDM
 - Implementable for passive or active microring modulators
- Method
 - Using signal optical power
 - Using Bit-error-rate (BER)
 - Using dithering signal

Thermal Variation Monitoring Method

Utilizing signal optical power

- Sensing laser wavelength by monitoring mean modulated power
- By using drop port → eliminates power tap, yields WDM compatibility
- Susceptible to fluctuations in laser power
- Not applicable to passive resonator
- Directly Monitoring BER
 - Wavelength locking and thermal stabilization over 32K
 - Keep high quality of generated data by monitoring
 - Need complex circuit and high speed receivers \rightarrow high power consumption
 - Only applicable for modulators not switches or filters

Thermal Variation Monitoring Method

Dithering Signal

Wavelength $cos(f_{D}t) \otimes cos(f_{D}t+\phi) = \frac{1}{2}[cos(2f_{D}t+\phi)+cos(\phi)]$ $f_{D}: \text{ dithering signal frequency}$ $\phi: \text{ relative phase (0 or π) of modulated signal}$

- Mixing driving dithering signal and modulated optical signal
- In-, or out-of-phase depends on which side of the resonance the laser offset
- Reduction of extinction ratio by dithering is negligible
- Advantages
 - Simple circuit, immune to laser power fluctuation, compatible with WDM
 - Applicable to microring modulators

Conclusion

- Athermal device solutions
 - Using negative TO coefficient for WG cladding and integration with MZI
 - Zero-power consumption
 - Difficult to fabricate and incorporate with non-CMOS materials
 - In full system analysis, power to stabilize laser source is needed
- Control-based solutions
 - Integrated heater and control circuit is needed
 - Wavelength-lock & thermally stabilized both passive and active is possible
 - Additional active power consumption

Kishore Padmaraju* and Keren Bergman

Resolving the thermal challenges for silicon microring resonator devices

slayier55@gmail.com

High-Speed Circuits & Systems Lab. Dept. of Electrical and Electronic Engineering Yonsei University

1885