

Silicon photonic devices and integrated circuits

Po Dong*, Young-Kai Chen, Guang-Hua Duan and David T. Neilson Nanophotonics 3.4-5 (2014): 215-228.

> 2015.12.01 김창훈

Introduction

- ✤ Definition of Silicon Photonic devices in this paper
 - 1. Using silicon-core waveguide
 - ✓ High index contrast (≈ 2) with silicon oxide as a cladding
 - ✓ High density integration (sub-micrometer)
 - ✓ High coupling efficiency between silicon waveguide and optical fiber

- 2. Whole-wafer processing based on CMOS fabrication
 - ✓ Large-scale & low-cost manufacturability.
 - ✓ Monolithic integration of silicon PICs with CMOS drivers
 - ✓ Solve interconnect bottlenecks of modern electronic ICs

Introduction

- Applications
 - 1. Long-haul/metro coherent optical networks
 - > High-order modulation (QAM, OFDM) and coherent detection
 - > Maximize channel capacity up to 100 Gb/s, 400 Gb/s, 1 Tb/s
 - > Integration of complex photonic circuit and CMOS electronics

< Optical coherent transmitter >

< Optical coherent receiver >

NIVERSITY

Introduction

- Applications
 - 2. Optical interconnects for routers and switches
 - 3. Datacenters and supercomputers
 - ✓ Low power consumption & Co-integration of electronics and photonics

WDM transmitters & receivers

WDM (Wavelength Division Multiplexing)

< Basic WDM technology diagram >

- Multi-channel system
- Transport multiple wavelengths over a fiber
- Use wavelength Mux/Demux

< AWG (Arrayed Waveguide Gratings) >

- Widely used for optical MUX/DeMUX
- Composed of two couplers and waveguides array
- Use phase shift and optical interference

WDM transmitters & receivers

WDM transmitter (100 GHz spacing, 25 Gbps/wavelength, 5x8 mm² footprint)

WDM transmitters & receivers

WDM receiver (0.2 A/W, 200 GHz spacing, 40 channels)

Monolithically integrated WDM receiver

< cantilever based spot-size converter >

Component	Waveguide	Reason
Spot-size converter	Si ₃ N ₄	Low coupling loss
AWG	Si ₃ N ₄	Fabrication tolerance
Waveguides	Silicon	Low loss
Ge-PD	Silicon	p-n junctions

✤ Optical coherent system

- High spectral efficiency: High-order modulation (QAM, OFDM)
- High receiver sensitivity: optical beating between signal and local oscillator

UNIVERSITY

✤ Optical coherent system

- High spectral efficiency: High-order modulation (QAM, OFDM)
- ▶ High receiver sensitivity: optical beating between signal and local oscillator

- ✤ Coherent transmitter
 - > MZM based dual-polarization coherent transmitter (PDM-IQ modulator)

 \geq

- ✤ Coherent transmitter
 - Ring modulator based coherent transmitter

< BPSK modulation in ring modulator >

< QPSK modulator based on ring modulator >

- > BPSK modulation using overdrive of ring modulator
- BPSK modulator x 2 + phase shift = QPSK modulator

- Coherent receiver
 - Dual-polarization coherent receiver (PDM-coherent receiver)

IT: inverse taper, **LO**: local oscillator, **PBS**: polarization beam splitter, **MMI**: multimode interference coupler (90 degree hybrid)

> Components

- ✓ Two PBSs
- ✓ Two ITs
- ✓ Two PRs
- ✓ Two MMIs
- ✓ Eight PDs

Summary

- Silicon Photonic devices
 - Using silicon-core waveguide
 - Whole-wafer processing based on CMOS fabrication
 - > Applications
 - ✓ Long-haul/metro coherent optical networks
 - ✓ Optical interconnects for routers and switches
 - ✓ Datacenters and supercomputers
 - > PICs
 - ✓ WDM transmitter/receiver
 - Integration of AWG and modulators array/PDs array
 - ✓ Coherent transmitter & receiver
 - MZM based PDM-IQ modulator
 - Micro-ring modulator based Coherent transmitter
 - PDM-coherent receiver

