Coaxial cables (Cheng 9-2,3)

Why use coaxial cables?

- Deliver high-frequency electric signals without loss and distortion
- Signals are well guided within coax cables
- E, H fields within transmission lines?
- Relationship between E, H fields and V, I?

Transmission Lines: support voltage and current waves

FIGURE 9-1 Common types of transmission lines.

Focus on parallel-plate transmission lines for easy analysis

Determine E and H when they are confined within two parallel plates

by surface charges and currents

$$\overline{E} = \overline{y} E_0 e^{-j\beta z} \quad (0 < y < d)$$

$$\overline{H} = -x \frac{E_0}{\eta} e^{-j\beta z} \quad (0 < y < d)$$

Charge and current densities

$$\rho_s(y=0) = \varepsilon E_0 e^{-j\beta z}$$

$$\rho_s(y=d) = -\varepsilon E_0 e^{-j\beta z}$$

$$\overline{J_s} (y=0) = \overline{z} \frac{E_0}{\eta} e^{-j\beta z}$$

$$\overline{J_s} (y=d) = -\overline{z} \frac{E_0}{\eta} e^{-j\beta z}$$

Voltages and currents?

$$\overline{E} = \overline{y} E_0 e^{-j\beta z} \quad (0 < y < d)$$

$$\overline{H} = -x \frac{E_0}{\eta} e^{-j\beta z} \quad (0 < y < d)$$

$$V(y = d, z) - V(y = 0, z) = -\int_{y=0}^{d} E_{y}(y)dy$$
$$= -E_{o}e^{-j\beta} z_{d}$$

$$W >> d$$
 $I(y = d, z) = J_s W = -\frac{E_0}{\eta} e^{-j\beta} z_W$

Voltage and Current Waves!

$$\overline{H} = -x \frac{E_0}{\eta} e^{-j\beta z} \quad (0 < y < d) \qquad V(z) = -E_y(z)d \qquad I(y = d, z) = H_x(x)W$$

Wave equations for V(z) and I(z)?

$$V(z) = -E_{y}(z)d$$
 and $I(z) = H_{x}(z)W$

From
$$\nabla \times \vec{E} = -j\omega\mu\vec{H}$$
, $\nabla \times \vec{E} = \begin{vmatrix} \vec{x} & \vec{y} & \vec{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & E_y & 0 \end{vmatrix} = \vec{x}(-\frac{\partial E_y}{\partial z})$ $\therefore \frac{dE_y}{dz} = j\omega\mu H_x$

$$\frac{dV}{dz} = -\frac{dE_y}{dz}d = -j\omega\mu H_X d = -j\omega\mu \frac{I(z)}{W}d$$

Let $L = \frac{\mu d}{W}$, inductance per unit length

$$\therefore \frac{dV}{dz} = -j\omega LI$$

$$V(z) = -E_y(z)d$$
 and $I(z) = H_\chi(z)W$

From
$$\nabla \times \overline{\mathbf{H}} = \mathbf{j}\omega\varepsilon\overline{\mathbf{E}}$$

$$\nabla \times \overline{\mathbf{H}} = \begin{vmatrix} \overline{\mathbf{x}} & \overline{\mathbf{y}} & \overline{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & 0 & 0 \end{vmatrix} = \overline{\mathbf{y}}(\frac{\partial H_x}{\partial z}) \qquad \therefore \frac{dH_x}{dz} = \mathbf{j}\omega\varepsilon E_y$$

$$\frac{dI}{dz} = \frac{dH_x}{dz}W = j\omega\varepsilon E_y W = -j\omega\varepsilon \frac{V(z)}{d}W$$

Let
$$C = \frac{\varepsilon W}{d}$$
, capacitance per unit length

$$\frac{dI}{dz} = -j\omega CV$$

$$\frac{dV}{dz} = -j\omega LI \qquad \frac{dI}{dz} = -j\omega CV \qquad (L = \frac{\mu d}{W}, C = \frac{\varepsilon W}{d})$$

With additional differentiation,

$$\frac{d^2V}{dz^2} = -j\omega L \frac{dI}{dz} = -\omega^2 LCV \quad \text{: Wave Eq. for } V(z)$$

$$\frac{d^2I}{dz^2} = -j\omega C \frac{dV}{dz} = -\omega^2 LCI \text{ : Wave Eq. for } I(z)$$

Remember

$$\nabla^{2} \overline{E} = \mu \varepsilon \frac{\partial^{2} \overline{E}}{\partial t^{2}} \qquad \nabla^{2} \overline{H} = \mu \varepsilon \frac{\partial^{2} H}{\partial t^{2}}$$

$$\nabla^{2} \overline{E} = -\omega^{2} \mu \varepsilon \overline{E} \qquad \nabla^{2} \overline{H} = -\omega^{2} \mu \varepsilon \overline{H}$$

$$\frac{d^2V}{dz^2} = -\omega^2 LCV \qquad \qquad \frac{d^2I}{dz^2} = -\omega^2 LCI \qquad \qquad (L = \frac{\mu d}{W}, C = \frac{\varepsilon W}{d})$$

Solutions:

$$V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{+j\beta z}$$

$$I(z) = I_0^+ e^{-j\beta z} + I_0^- e^{+j\beta z}$$

$$-\beta^2 V(z) = -\omega^2 LCV(z)$$

$$-\beta^2 I(z) = -\omega^2 LCI(z)$$

$$\therefore \beta = \omega \sqrt{LC} = \omega \sqrt{\mu \varepsilon}$$

$$\therefore \beta = \omega \sqrt{LC} = \omega \sqrt{\mu \varepsilon}$$

$$u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{1}{\sqrt{LC}}$$

How about impedance?

$$V(z) = V_0^+ e^{-j\beta z}$$
 $I(z) = I_0^+ e^{-j\beta z}$

$$\frac{dI(z)}{dz} = -j\beta I_0^+ e^{-j\beta z}$$

Remember
$$\frac{dI(z)}{dz} = -j\omega CV(z) = -j\omega CV_0^+ e^{-j\beta z}$$

$$\therefore \frac{V_0^+}{I_0^+} = \frac{\beta}{\omega C} = \frac{\omega \sqrt{LC}}{\omega C} = \sqrt{\frac{L}{C}} = \sqrt{\frac{\mu d}{W}} = \eta \frac{d}{W}$$

$$Z_0 = \sqrt{\frac{L}{C}}$$
 (TL Characteristic Impedance)

How about impedance?

$$V(z) = V_0^- e^{j\beta z}$$
 $I(z) = I_0^- e^{j\beta z}$

$$\frac{dI(z)}{dz} = j\beta I_0^{-} e^{j\beta z}$$

Remember
$$\frac{dI(z)}{dz} = -j\omega CV(z) = -j\omega CV_0^- e^{j\beta z}$$

$$\therefore \frac{V_0^-}{I_0^-} = -\frac{\beta}{\omega C} = -\frac{\omega\sqrt{LC}}{\omega C} = -\sqrt{\frac{L}{C}} = -Z_0$$

Why negative impedance?

