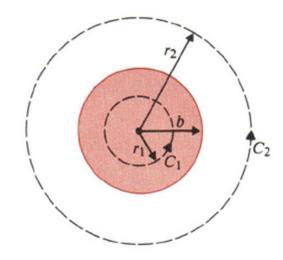
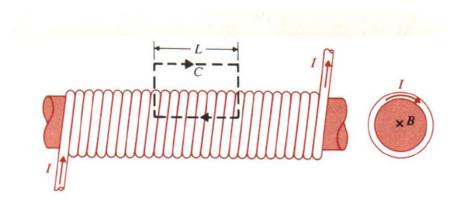
(Chap. 6 in Cheng)

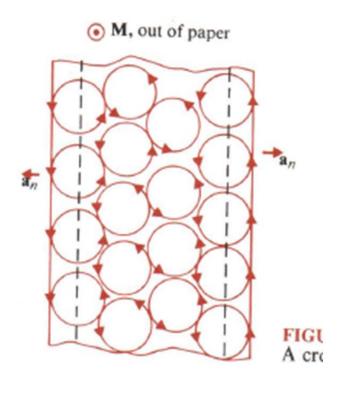

- Current produces magnetic fields

Ampere's Law: $\nabla\! imes\! ar{H}=ar{J}$

 \overline{J} : Current density (A/m²) \overline{H} : Magnetic field (A/m)


Integral form?

- Example 6-1 in Cheng. Determine H when uniform current I is flowing out.


- Example 6-3 in Cheng:

Determine H when the conductor is infinitely long and there are n turns for unit length

- How does magnetic field affect materials?

Magnetization: Microscopic current loops inside the material (magnetic dipole)

$$\overline{M}=\chi_m\overline{H}$$
 χ_m : Magnetic susceptibility

 \overline{B} : Magnetic flux density

$$\overline{B} = \mu_0 \overline{H} + \mu_0 \overline{M} = \mu_0 \overline{H} + \mu_0 \chi_m \overline{H}
= (1 + \chi_m) \mu_0 \overline{H} = \mu_r \mu_0 \overline{H} = \mu \overline{H}$$

 μ : Permeability

- Diamagnetic: $\mu_r < 1$

- Paramagnetic: $\mu_r > 1$

- Ferromagnetic: $\mu_r >> 1$

In this course, we assume $\mu = \mu_0$ (EM waves in non-magnetic materials)

Correspondence between Electric and Magnetic Fields

$$egin{aligned} \overline{E} & \overline{H} \\ \overline{D} & \overline{B} \\ \overline{D} &= \varepsilon \overline{E} & \overline{B} &= \mu \overline{H} \\ \nabla \cdot \overline{D} &= \rho & \nabla \cdot \overline{B} &= 0 \\ \nabla \times \overline{E} &= 0 & \nabla \times \overline{H} &= \overline{J} \end{aligned}$$

Static Maxwell Equations