(Cheng 8-3.3, 8-4) -----

Plasma: Ionized gases with equal electron and ion densities

- Plasma: Ionized gases with equal electron and ion densities
- Plasma formation in ionosphere

- Air molecules located 50~500km above earth are ionized by solar radiation
- Plasma in ionosphere greatly affects EM wave propagation

Propagation through plasma

Simple modeling with P-vector

 $\overline{D} = \varepsilon \overline{E} = \varepsilon_0 \overline{E} + \overline{P}$

 $\overline{P} = N\overline{p}$ (\overline{p} : dipole moment, N: density) $\overline{p} = -q\overline{x}$ (minus for electron)

Determine P-vector in plasma

Electrons in plasma experience force with EM waves

$$\overline{F} = -q\overline{E} = m\overline{a} = m\frac{d^{2}\overline{x}}{dt^{2}} \implies -m\omega^{2}\overline{x} \text{ (assume } e^{j\omega t} \text{ dependence)}$$

$$\overline{x} = \frac{q}{m\omega^{2}}\overline{E} \qquad \overline{p} = -q\overline{x} = \frac{-q^{2}}{m\omega^{2}}\overline{E}$$

$$\overline{P} = N\overline{p} = -\frac{Nq^{2}}{m\omega^{2}}\overline{E}$$

$$\overline{P} = -\frac{Nq^2}{m\omega^2}\overline{E}$$

$$\overline{D} = \varepsilon_0\overline{E} + \overline{P} = \varepsilon_0\overline{E} - \frac{Nq^2}{m\omega^2}\overline{E} = \varepsilon_0\left(1 - \frac{Nq^2}{m\omega^2\varepsilon_0}\right)\overline{E}$$

$$= \varepsilon_0\left(1 - \frac{\omega_p^2}{\omega^2}\right)\overline{E}$$

 $\omega_p = \sqrt{\frac{Nq^2}{m\varepsilon_0}}$ (*rad / s*, plasma angular frequency)

$$\rightarrow \varepsilon = 0$$
 when $\omega = \omega_p$

Propagation characteristics with
$$\varepsilon = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right) \overline{E}$$

- If
$$\omega < \omega_p$$
 $\varepsilon < 0$
 $k = \omega \sqrt{\mu \varepsilon} = -j\alpha$: purely imaginary

No propagation!

$$N \approx 3 \times 10^{11} \text{ m}^{-3}$$
 for ionosphere
 $f_p \approx 5 \text{ MHz}$

Very long distance communication using ionoshere: Amateur (Ham) radio

Propagation characteristics with

$$\varepsilon = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right) \overline{E}$$

If $\omega > \omega_p$

 $\varepsilon > 0$ Propagation possible

Consider phase velocity

$$v = \frac{\omega}{k} = \frac{\omega}{\omega\sqrt{\mu\varepsilon}} = \frac{1}{\sqrt{\mu_0\varepsilon_0}} \left(1 - \frac{\omega_p^2}{\omega^2}\right)^{\frac{1}{2}} > \frac{1}{\sqrt{\mu_0\varepsilon_0}} = c$$

Greater than speed of light?

 \checkmark In order to transport information (energy), more than one frequency is needed

Infinitely long sine function (no information delivery)

Consider the simplest case of having only two frequencies

$$E(z,t) = e^{j((\omega_0 + \Delta\omega)t - (\beta_0 + \Delta\beta)z} + e^{j((\omega_0 - \Delta\omega)t - (\beta_0 - \Delta\beta)z}$$

$$= e^{j(\omega_0 t - \beta_0 z)} \left[e^{j(\Delta\omega t - \Delta\beta z)} + e^{-j(\Delta\omega t - \Delta\beta z)} \right]$$

$$= 2e^{j(\omega_0 t - \beta_0 z)} \cos(\Delta\omega t - \Delta\beta z)$$
Can information be delivered?
What is the velocity of information delivery?
Two types of velocity
Phase velocity
$$\frac{\omega}{\beta}$$
Group velocity: $v_g = \frac{\Delta\omega}{\Delta\beta} \Rightarrow \frac{d\omega}{d\beta}$

→ Phase and group velocities can have different values!

Phase Velocity vs Group Velocity

In plasma

$$k = \beta = \omega \sqrt{\mu_0 \varepsilon_0} \left(1 - \frac{\omega_p^2}{\omega^2} \right)^{\frac{1}{2}}, \quad \omega > \omega_p$$

$$v_p = \frac{\omega}{\beta} = \frac{\omega}{\omega \sqrt{\mu \varepsilon}} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \left(1 - \frac{\omega_p^2}{\omega^2} \right)^{\frac{1}{2}} > \frac{1}{\sqrt{\mu \varepsilon_0}} = c$$

$$v_g = \frac{d\omega}{d\beta} = \frac{1}{\frac{d\beta}{d\omega}} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \left(1 - \frac{\omega_p^2}{\omega^2} \right)^{\frac{1}{2}} < c$$

Group velocity is less than c!

