Quiz 2

March 29, 2016 E&M II Prof. Woo-Young Choi

Name:

Prob. 1(4)

A plane wave is propagating in a medium having $\varepsilon = 2\varepsilon_0$ and $\mu = \mu_0$ and its H-field is characterized as $\overline{H} = \overline{y}H_0 \exp(jx - jz)\exp(\omega t)$, where H_0 is a real constant. x, z are in meter and ω is in radian/sec.

(a)(1) In what direction in the x-z plane does this wave propagate? Draw an arrow in the x-z plane indicating the propagation direction and express the angle the arrow makes with the x-axis.

(b)(1) What is the numerical value for ω ?

(c)(2) What is the E-field of this wave? Give your answer in terms of parameters given in this problem.

Prob. 2 (2)

Consider an electromagnetic wave having $\overline{H} = \overline{x} \exp(-jz) \exp(j\omega t)$.

(a)(1) What is the polarization of this EM wave?

(b)(1) Show that this wave can be expressed by a sum of two circular polarized wave.

<u>Prob. 3 (2)</u>

A plane wave having with frequency ω is normally incident from vacuum into a highly conductive material as shown below.

(a)(1) What is the penetration depth for the wave in region 2? Give your answer in terms of ω, μ and σ .

(b)(1) What is the phase difference between E-field and H-field $((\angle \overline{E} - \angle \overline{H})?$ Give your answer in degree with the correct sign.

Prob. 4 (2)

A plasma has the plasma frequency of $\omega_{\rm P.}$

(a)(1) Plot the dependence of β (propagation constant) on ω (angular frequency) for the EM wave propagating in the plasma when $\omega > \omega_{\rm P}$.

(b)(1) How does the group velocity of the EM wave change as ω increases?