Quiz 2

March 29, 2016
E\&M II
Prof. Woo-Young Choi

Name:

Prob. 1(4)

A plane wave is propagating in a medium having $\varepsilon=2 \varepsilon_{0}$ and $\mu=\mu_{0}$ and its H -field is characterized as $\bar{H}=\bar{y} H_{0} \exp (j x-j z) \exp (\omega t)$, where H_{0} is a real constant. x, z are in meter and ω is in radian/sec.
(a)(1) In what direction in the $x-z$ plane does this wave propagate? Draw an arrow in the $x-z$ plane indicating the propagation direction and express the angle the arrow makes with the x-axis.
(b)(1) What is the numerical value for ω ?
(c)(2) What is the E-field of this wave? Give your answer in terms of parameters given in this problem.

Prob. 2 (2)

Consider an electromagnetic wave having $\bar{H}=\bar{x} \exp (-j z) \exp (j \omega t)$.
(a)(1) What is the polarization of this EM wave?
(b)(1) Show that this wave can be expressed by a sum of two circular polarized wave.

Prob. 3 (2)

A plane wave having with frequency ω is normally incident from vacuum into a highly conductive material as shown below.
(a)(1) What is the penetration depth for the wave in region 2? Give your answer in terms of ω, μ and σ.
(b)(1) What is the phase difference between E -field and H -field $((\angle \bar{E}-\angle \bar{H})$?

Give your answer in degree with the correct sign.

$$
\begin{array}{c|ccc}
\varepsilon_{o}, \mu_{o} & \begin{array}{ll}
\mu, \sigma \gg 1 & \\
E_{i} \rightarrow & \text { Region2 } \\
\boldsymbol{E}_{t}
\end{array}
\end{array}
$$

Prob. 4 (2)

A plasma has the plasma frequency of ω p.
(a)(1) Plot the dependence of β (propagation constant) on ω (angular frequency) for the EM wave propagating in the plasma when $\omega>\omega_{\mathrm{p}}$
(b)(1) How does the group velocity of the EM wave change as ω increases?

