Quiz 3

April 12, 2016
E\&M II
Prof. Woo-Young Choi

Name:

Prob. 1(3)

A plane EM wave having $\bar{E}=\bar{y} E(z, t)=\bar{y} E_{0} \exp (-j k z) \exp (j \omega t) \quad$ is normally incident from a vacuum to a perfect conductor, and $\operatorname{Re}[E(z, t)]$ at $t=t_{0}$ is shown below.

(a) Sketch $\operatorname{Re}\left[E_{r}(z, t)\right]$ at $\mathrm{t}=\mathrm{t}_{0}$ for the reflected electric field wave.
(b) Sketch $\operatorname{Re}\left[E_{\text {total }}(z, t)\right]$ at $\mathrm{t}=\mathrm{t}_{0}$ for the total electric field wave.
(c) Sketch $\operatorname{Re}\left[E_{\text {total }}(z, t)\right]$ at $\mathrm{t}=\mathrm{t}_{0}+\pi /(2 \omega)$ for the total electric field wave.

Prob. 2(3)

A plane wave is obliquely incident on a perfect conductor as shown below and has the E-field given as $\bar{E}_{i}=(\bar{x} / \sqrt{2}+\bar{y}-\bar{z} / \sqrt{2}) \exp (-j x) \exp (-j z)$.

(a) Decompose the E-field into parallel $\left(E_{\mathrm{P}}\right)$ and perpendicular $\left(E_{\perp}\right)$ polarizations.
(b) What is the reflected E -field?
(c) Determine the surface charge density induced at the interface.

Prob. 3 (3)

An EM wave whose E-field given as $\overline{E_{i}}=(\bar{x}+\bar{y}-\bar{z} / \sqrt{3}) \exp (-j x) \exp \left(-j \beta_{z} z\right)$
(x and z have the unit of meter) is obliquely incident on a dielectric interface as shown below.

(a) Determine β_{z}.
(b) What is θ_{t}, the transmission angle?
(c) What is the expression for the reflected E-field that has only the parallel polarization?

