Quiz 4

May 10, 2016 E&M II Prof. Woo-Young Choi

Name:

Prob. 1(4)

A lossy transmission line is characterized by L, C, R and G, inductance, capacitance, resistance and conductance per unit length, respectively.

(a)(2) Using the equivalent circuit model, derive the voltage transmission wave equation in the ω -domain.

(b)(1) If a DC (ω = 0) voltage of V₀ is connected to the transmission line at z=0 and the transmission line is infinitely long into the z-direction, what is the voltage as function of z?

(c)(1) What is the characteristic impedance of the transmission line for the case given in (b)?

Prob. 2(3)

A lossless transmission line is connected to a short circuit as shown below ($Z_L = 0$).

(a)(1) Determine the smallest value for z' where the current wave is zero. Give your answer in terms of λ , the wavelength.

(b)(1) Determine the smallest positive value for z' where the voltage wave is zero. Give your answer in terms of λ , the wavelength.

(c)(1) What is the standing wave ratio for the above transmission line circuit?

Prob. 3(4)

A sinusoidal voltage signal with angular frequency ω_0 is applied to a lossless transmission line with characteristic impedance R_0 and a load impedance Z_{L} . Assume the length of the transmission line is $\lambda/2$, where λ is the wavelength of the voltage wave on the transmission line.

For each type of the load given below, sketch |V(z')| or |I(z')| for z'= 0 to L. Make sure the locations for the maximum and minimum values are clearly indicated in your sketches.

(a)(2) Sketch |V(z')| if the load is a capacitor with capacitance $C = 1/(\omega R_0)$.

(b)(2) Sketch |I(z')| if the load is an inductor with inductance $L = R_0/\omega$.