Quiz 5

May 24, 2016
E\&M II
Prof. Woo-Young Choi
Name:

Prob. 1(3)

A transmission line circuit is connected to an ideal current source, which produces a constant step current of I_{0} at $t=0$ as shown below. The length of the line is L and the velocity of wave propagation on the line is v.
(a) Sketch the voltage on the line, $V(z)$, for $t=0.5 \mathrm{~L} / \mathrm{V}$.
(b) Sketch the current on the line, $V(z)$, for $t=1.5 \mathrm{~L} / \mathrm{v}$.
(c) Sketch the voltage on the line, $V(z)$, for $t=\infty$.

Make sure you express the magnitude of waves in terms of I_{0}.

Prob. 2(4)

A load made up of a resistor and a capacitor in parallel is connected to a transmission line as shown below. A step voltage is applied to the transmission line at $t=0$. The capacitor is free of charge initially and the voltage wave propagates the transmission line with velocity v.

(a)(2) Plot $\mathrm{V}_{\mathrm{L}}(\mathrm{t})$, the voltage across the load. Make sure you specify important parameters in your plot.
(b)(2) Plot $v(t)$ at $z=L / 2$. Make sure you specify important parameters in your plot.

Prob. 3(3)

We want to achieve impedance matching for a load having $Z_{L}=20-j 20(\Omega)$ by placing a short-stub on the transmission line. Use the Smith Chart answering following questions. Assume the transmission line has characteristic impedance of 50Ω.

(a) Determine the shortest possible distance for d in terms of wavelength λ.
(b) Determine the impedance for Z_{1}.
(c) Determine the shortest possible short stub length in terms of wavelength λ.

