High-speed Serial Interface

Lect. 9: Equalizers

Why equalization?

 Intersymbol interference (ISI) caused by frequencydependent loss of channel

Linear Equalizer

High-pass filter / High-frequency boosting

→ Continuous Time Linear Equalizer (CTLE)

CTLE Frequency Response

Assuming channel has one pole, CTLE should provide 1 zero and 2 poles

Tunability

- CTLE should be tunable
 - Channel variation
 - Variations in channel fabrication
 - Uncertainty in channel modeling
 - Channel degradation/defect after usage
 - PVT variation of equalizer
- ➔ Tunability is a must

Tunability

• Tuning for pole/zero locations

Controllability

• Tuning DC gain

Passive CTLE

- Various passive high-pass filters available

No power consumption But

- Lossy
- PVT dependent
- Difficult to achieve 50-ohm matching
- Difficult to tune
- Often large size

Active CTLE

- Differential amplifier
 - Basic differential amp. has1 pole from load capacitance

Active CTLE

- Inductive load
 - Shunt inductor provides
 - a pole/zero pair

Source Degeneration for CTLE

Source Degeneration for CTLE

 Capacitive generation provides high-frequency boosting since a capacitor has lower impedance at high frequency

→ Design Exercise

Limitations of CTLE

Channels may not be properly modeled with one pole

Limitations of CTLE

- Applicable to only ISIs due to linear frequency-dependent loss
- Other causes for ISI are;
 - Impedance mismatching
 - Differential offset
 - Cross-talk
 - Parasitic poles and zeros (ex: package parasitic)

Limitations of CTLE

• High-frequency Noise boosting

Time-Domain Analysis

- Frequency-Domain Analysis
 - Freq. Response of Input x Freq. Response of Channel x Equalizer
 - = Freq. Response of Output
- Time-Domain Analysis

- Equalization: Force pre- and post-cursors to zero

FIR Filter

- Any CTLE filter can be converted into a discrete-time domain filter
- IIR (Infinite Impulse Response) → FIR (Finite Impulse Response)

- Hard to implement Rx FIR filter because the precise amount of delay (clock period) is not available in Rx
 - → Tx FIR filter

Pre-/De-Emphasis

- Tx FIR is also called Feed-Forward Equalizer (FFE) or Pre-/De-Emphasis
 - Pre-emphasis: to enhance high-frequency components
 - De-emphasis: to reduce low-frequency components

Circuit implementation

- Current-mode drivers can be easily used for pre-/deemphasis
 - − $D_1 = D_0 \rightarrow V_{out,diff} = +/-50 \times (C_0 C_1)/2$
 - − $D_1 \neq D_0 \rightarrow V_{out,diff} = +/-50 \times (C_0 + C_1)/2$
 - Level difference is defined as sum and subtract

Decision Feedback Equalizer (DFE)

Non-linear equalization based on sampling

- Complicated but can provide high-performance equalization
- Requires clock signals for sampling
- Often used with CTLE

