Lect. 17: Light as a Particle (Photon)

Blackbody Radiation: EM radiation from an heated object at equilibrium
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Blackbody Radiation: EM radiation from an heated object at equilibrium
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Scientists in 19th century knew much about EM waves and thermodynamics

Gustav Kirchoff
(1824 ~ 1887)
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In 1900, Planck proposed EM energies are quantized (photon)
Ephoton = hV
(h: Planck constant, 6.626x10734 J-s, 4.136x 10715 eV-s)
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Max Planck (1858~1947)
Nobel Prize in Physics in 1918

Beginning of Quantum Mechanics

(Spectral energy density: energy per bandwidth per volume)
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Photoelectric effects: Electron emission when light shines on a material

Discovered in 1887 by

Heinrich Hertz
(1857 - 1894)
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Photoelectric effect
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— Amount of photoelectrons depends on light intensity
— Same minimum voltage for current flow regardless of light intensity

qVS = %mvrznax (: Kmax)

=» Same max. kinetic energy for emitted electrons regardless of light intensity?

— What determines the max. kinetic energy of photoelectrons?
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Photoelectron effects:
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=» Same max. kinetic energy for emitted electrons regardless of light intensity?
=» What determines the max. kinetic energy of emitted electrons?
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UV light
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— K ax INCreases with v

— No photoelectrons if v is smaller than a certain value
=» These cannot be explained by EM waves

Larger intensity => larger E-field
But larger E—field inserts larger force (F=qE) and
therefore photoelectronics should have larger kinetic energy

EM waves with any frequency should produce photoelectrons
if its intensity is large enough
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UV light
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Einstein’s explanation: Light delivers energy in chunks (photons)
Ephoton — hV
3x10°m/sec _ 1.24
Eproton =hV = hS =4.136x1075(eV -sec) = eV
A y) Afpm]
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How can photons explain what we have learned about EM waves
=» reflection, interference, waveguide ...

Probabilistic Interpretation from QM
N | Ny IR, N
R = (L= => R represents probability
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— Use whichever (wave or photon) is more convenient for the given problem

— Wave/particle duality applies to everything (Quantum Physics)
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