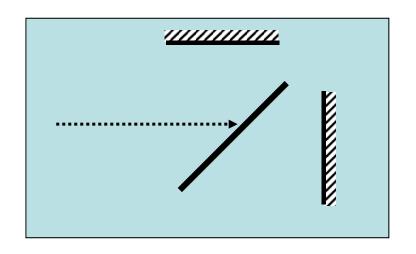


$$T = \frac{I_{out}}{I_{in}} = \frac{(1-R)^2}{(1-R)^2 + 4R\sin^2(kL)} (R = r'^2)$$

Fabry-Perot Interferometer

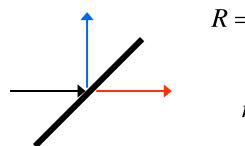
Charles Fabry (1867-1945)



Alfred Perot (1863–1925)

FP Interferometer can be also realized with two parallel partially reflecting mirrors

Michelson Interferometer



Albert Michelson (1852~1931) Nobel Prize in Physics in 1907

Two mirrors and one beam splitter

Beam Splitter

$$R = \frac{1}{2}, T = \frac{1}{2}$$

$$r = ?, t = ?$$

Michelson Interferometer:

Four outputs:

Side 1: r r 2: t t

Bottom 1: r t 2: t r

Assuming $E_{in} = 1$,

$$E_{out, side} = re^{-jkl_1}(-1)e^{-jkl_1}r + te^{-jkl_2}(-1)e^{-jkl_2}t = -r^2e^{-j2kl_1} - t^2e^{-j2kl_2}$$

$$E_{out,bottom} = re^{-jkl_1}(-1)e^{-jkl_1}t + te^{-jkl_2}(-1)e^{-jkl_2}r = -rte^{-j2kl_1} - rte^{-j2kl_2}$$

With
$$r = t = \frac{1}{\sqrt{2}}$$
,
$$E_{out, side} = -r^2 e^{-j2kl_1} - t^2 e^{-j2kl_2}$$

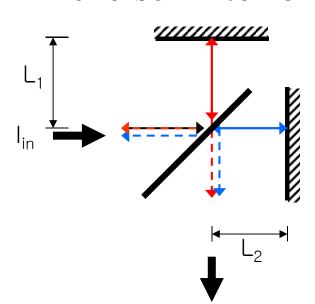
$$= -\frac{1}{2} \left(e^{-j2kl_1} + e^{-j2kl_2} \right) = -\frac{1}{2} e^{-jk(l_1 + l_2)} \left(e^{-jk(l_1 - l_2)} + e^{jk(l_1 - l_2)} \right)$$

$$I_{out, side} = \left| E_{out, side} \right|^2 = \cos^2 [k(l_1 - l_2)]$$

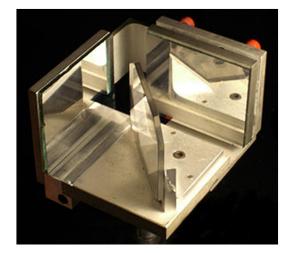
$$\begin{split} E_{out,bottom} &= -rte^{-j2kl_1} - rte^{-j2kl_2} \\ &= -\frac{1}{2} \Big(e^{-j2kl_1} + e^{-j2kl_2} \Big) \\ I_{out,bottom} &= \Big| E_{out,bottom} \Big|^2 = \cos^2[k(l_1 - l_2)] \end{split}$$

Against energy conservation!

With
$$r = \frac{1}{\sqrt{2}}, \ t = j \frac{1}{\sqrt{2}}$$


(r and t should have $\pi/2$ phase difference in order to satisfy energy conservation)

$$\begin{split} E_{out, \, side} &= -r^2 e^{-j2kl_1} - t^2 e^{-j2kl_2} \\ &= -\frac{1}{2} \Big(e^{-j2kl_1} - e^{-j2kl_2} \Big) = -\frac{1}{2} e^{-jk(l_1 + l_2)} \Big(e^{-jk(l_1 - l_2)} - e^{jk(l_1 - l_2)} \Big) \\ I_{out, \, side} &= \Big| E_{out, \, side} \Big|^2 = \sin^2[k(l_1 - l_2)] \end{split}$$


$$\begin{split} E_{out,bottom} &= -rte^{-j2kl_1} - rte^{-j2kl_2} \\ &= -\frac{j}{2} \Big(e^{-j2kl_1} + e^{-j2kl_2} \Big) \\ I_{out,bottom} &= \Big| E_{out,bottom} \Big|^2 = \cos^2[k(l_1 - l_2)] \end{split}$$

Michelson Interferometer:

I_{out.}

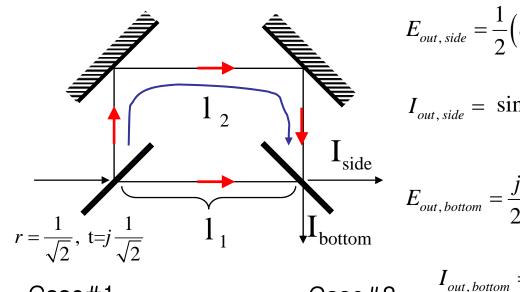
$$\frac{I_{out,bottom}}{I_{in}} = \cos^2[k(l_1 - l_2)]$$

 $k(l_1 - l_2)$ can be measured very precisely

→ Speed of light

Michelson-Morley experiment:

Speed of light is same in all direction everywhere


→ Aether does not exist, Special relativity

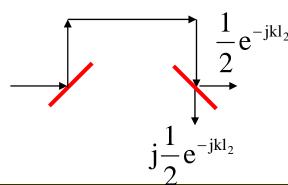
Recently, used for detecting gravitational wave!

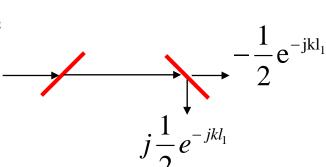
LIGO: Laser Interferometer Gravitational-Wave Observatory

Mach-Zehnder Interferometer:

Assuming $E_{in} = 1$,

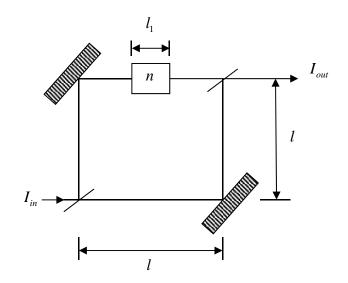
$$E_{out, side} = \frac{1}{2} \left(e^{-jkl_2} - e^{-jkl_1} \right) = \frac{1}{2} e^{-jk\frac{l_2 + l_1}{2}} \left(e^{-jk\frac{l_2 - l_1}{2}} - e^{jk\frac{l_2 - l_1}{2}} \right)$$


$$I_{out, side} = \sin^2\left(k\frac{l_1 - l_2}{2}\right)$$


$$E_{out, bottom} = \frac{\dot{J}}{2} \left(e^{-jkl_1} + e^{-jkl_2} \right) = \frac{\dot{J}}{2} e^{-jk\frac{l_1 + l_2}{2}} \left(e^{-jk\frac{l_1 - l_2}{2}} + e^{jk\frac{l_1 - l_2}{2}} \right)$$

$$I_{out, bottom} = \cos^2\left(k\frac{l_1 - l_2}{2}\right)$$

Case#2


Can any EM wave cause interference?

→ Only EM waves having clear phase relationship experience interference: coherent

How large (I_1-I_2) can be?

→ As long as two separated waves are coherent or within coherent length Separated waves become incoherent due to intrinsic phase noises

Homework: Determine I_{out}/I_{in} for an interferometer shown below. It is made of two beam splitters, two mirrors and a block of material having index n and length I_1 placed in one arm. Assume there is no reflection from this block of material.

