Review of classical mechanics

I. Energy & ForceII. OscillationsIII. Waves

Momentum & Kinetic Energy

- Momentum
 - Expressed as $\vec{p} = m\vec{v}$
- Kinetic energy
 - Energy associated with the motion

- Expressed as
$$K.E. = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$
, where $p^2 = \vec{p} \cdot \vec{p}$

- Potential energy
 - Energy due to position
 - Denoted by V(r) in quantum mechanics, in unit of Joules
- Total energy
 - Sum of kinetic energy and potential energy, "Hamiltonian"

$$H = \frac{p^2}{2m} + V(r)$$

Force

• Force & momentum

- Newton's 2nd law:
$$F = m\vec{a} = m\frac{d\vec{v}}{dt} = \frac{d\vec{p}}{dt}$$

• Force & potential energy, V(r)

-
$$\Delta V = F_{pushx} \Delta x$$

 $\Rightarrow F_{pushx} = \frac{\Delta V}{\Delta x}$
 $\Rightarrow F_{pushx} = \frac{dV}{dx}$

- Force due to potential energy difference is downhill

Mass on Spring: Oscillation

- Simple harmonic oscillator
 - Restoring force :F = -Ky, K is spring constant

$$- F = Ma = M\frac{d^2y}{dt^2}$$

$$- \frac{d^2y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

\$\omega\$ is angular frequency of oscillation

- Solution for equation is

 $y \propto \sin(\omega t)$

Harmonic Oscillators

🛞 Minkyu Kim

Classical Wave Equation: Standing Waves

• Force at mass j

Helmholtz Wave Equation

- Considering oscillation at single angular frequency ω (Monochromatic wave)
 - Solution for wave equation is combination of $: \exp(i\omega t), \exp(-i\omega t), \cos(\omega t), \sin(\omega t)$
 - Solution $\phi(z,t) \equiv Z(z) \cdot T(t) \Longrightarrow \frac{\partial^2 \phi}{\partial t^2} = -\omega^2 \phi$
 - Helmholtz wave equation (Only spatial part remaining from wave equation) $\frac{d^2 Z(z)}{dz^2} + k^2 Z(z) = 0, where k^2 = \frac{\omega^2}{c^2}$

Standing Waves

$$= 2\cos(\omega t)\sin(kz)$$
, where $k = \frac{\omega}{c} = \frac{2\pi L}{L}$

Conclusion

- Expression of energy, force in quantum mechanics
- Simple harmonic oscillation

$$- \frac{d^2 y}{dt^2} = -\frac{K}{M}y = -\omega^2 y$$

Wave equation

$$- \frac{\partial^2 y}{\partial z^2} - \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} = 0$$

-
$$\frac{d^2 Z(z)}{dz^2} + k^2 Z(z) = 0, where \ k^2 = \frac{\omega^2}{c^2} (\text{Helmholtz wave equation})$$

