2016-2 QUANTUM MECHANICS FOR ELECTRICAL AND ELECTRONIC ENGINEERS

Wave Propagation

Min Soo Bae

2016.09.19 mandoo113@yonsei.ac.kr School of Electrical and Electronic Engineering, Yonsei University, Korea

SEMICIM Semiconductor Engineering Laboratory

Background

a. Plane waves and interference

b. Diffraction

c. Diffraction from periodic structures

Summary

Background

In the previous lecture...

1-D wave equation

$$\frac{\partial^2 y}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = 0 \quad \text{c: wave velocity}$$

For monochromatic wave (single angular frequency ω)

 $\phi(z,t) = Z(z)T(t)$

$$\frac{\partial^2 \phi(z,t)}{\partial t^2} = -\omega^2 \phi(z,t)$$

 $\frac{d^2 Z(z)}{dz^2} + k^2 Z(z) = 0 \qquad k^2 = \frac{\omega^2}{c^2} \qquad : \text{Helmholtz wave equation}$

ω:angular frequency

a. Plane waves and interference

Wave equation in 3 dimensions

$$\nabla^2 \phi(x, y, z, t) - \frac{1}{c^2} \frac{\partial^2 \phi(x, y, z, t)}{\partial t^2} = 0$$

where $\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

For monochromatic wave (single angular frequency ω)

Verifying plane wave solutions of the form when k= ω /c

$$\phi(x, y, z, t) = \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

where
$$\mathbf{r} = x\,\hat{\mathbf{x}} + y\,\hat{\mathbf{y}} + z\,\hat{\mathbf{z}}$$
 $\mathbf{k} = k_x\,\hat{\mathbf{x}} + k_y\,\hat{\mathbf{y}} + k_z\,\hat{\mathbf{z}}$

(1955) (1156/5196) (1210-9) (1210-9)

SEMICIM

a. Plane waves and interference

For monochromatic wave (single angular frequency ω)

Verifying plane wave solutions of the form when k= ω /c

$$\nabla \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)] = \left(\hat{\mathbf{x}}\frac{\partial}{\partial x} + \hat{\mathbf{y}}\frac{\partial}{\partial y} + \hat{\mathbf{z}}\frac{\partial}{\partial z}\right) \exp\left\{i\left[k_x x + k_y y + k_z z - \omega t\right]\right\}$$
$$= i\left(k_x \hat{\mathbf{x}} + k_y \hat{\mathbf{y}} + k_z \hat{\mathbf{z}}\right) \exp\left\{i\left[k_x x + k_y y + k_z z - \omega t\right]\right\}$$

$$= i\mathbf{k} \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

$$\nabla^{2} \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)] = \nabla \cdot \nabla \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

$$= \nabla \cdot \left(i\vec{k} \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]\right)$$

$$= i\left(k_{x}\frac{\partial}{\partial x} + k_{y}\frac{\partial}{\partial x} + k_{z}\frac{\partial}{\partial x}\right)\exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

$$= -(k_{x}^{2} + k_{y}^{2} + k_{z}^{2})\exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

$$= -k^{2}\exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

(1931) - 3.565(3)(3) - 2529 () - 2550

a. Plane waves and interference

For monochromatic wave (single angular frequency ω)

Verifying plane wave solutions of the form when k= ω /c

Since
$$\frac{\partial^2}{\partial t^2} \exp[i(\mathbf{k}\cdot\mathbf{r} - \omega t)] = -\omega^2 \exp[i(\mathbf{k}\cdot\mathbf{r} - \omega t)],$$

with $\nabla^2 \exp[i(\mathbf{k}\cdot\mathbf{r} - \omega t)] = -k^2 \exp[i(\mathbf{k}\cdot\mathbf{r} - \omega t)]$
 $\nabla^2 \phi(x, y, z, t) - \frac{1}{c^2} \frac{\partial^2 \phi(x, y, z, t)}{\partial t^2} = 0$
 $\mathbf{k} = \omega/c,$
 $\mathbf{k} = \omega/c,$

 $\phi(x, y, z, t) = \exp[i(\mathbf{k} \cdot \mathbf{r}) - \omega t]$ is a solution for any vector direction **k**

provided
$$|\mathbf{k}| = \frac{\omega}{c}$$

0221 117058903 0200

a. Plane waves and interference

Wave interference

Linearity of wave equation

A plane wave solution \mathbf{k}_1

A plane wave solution $k_1 + k_2$

A plane wave solution \mathbf{k}_2

Wave interference between 2 waves is also a solution of wave equation because of Linearity of wave equation

What is Diffraction?

Diffraction refers to various phenomena which occur when a wave encounters an **obstacle** or a **slit**.

Interference is a phenomenon in which two waves **superpose** to form a resultant wave of greater, lower, or the same amplitude.

Huygens' principle

Christiaan Huygens (1629-1695)

Every unobstructed point on a wavefront will act a source of secondary spherical waves. The new wavefront is the surface tangent to all the secondary spherical waves.

b. Diffraction

Waves from an aperture

By putting huygens' sources between the aperture, wave from an aperture can be modeled.

(R) YONSEI UNIVERSITY

b. Diffraction

Waves from a point source/an aperture

As the number of point sources increase, we have converged on a good description in this model!

b. Diffraction

Diffraction angle

If we look far away from a set of sources,

High frequency speakers : very directional Low frequency speakers : not very directional

참고 사이트 http://yjh-phys.tistory.com/1459

What does the back-scattered light look like?

Concentric circle

What does the back-scattered look like?

Zeroth order diffraction

All of the sources add up in phase to generate a phase going back

An upward or downward direction is also possible

Larger scatterers seperation gives beam closer in angle

Calculate the angle Θ of diffracted waves

Larger scatterers seperation gives beam closer in angle

Calculate the angle Θ of diffracted waves

First order diffraction

Second order diffraction

(negative) First order diffraction

Wave equation in 3 dimensions

$$\nabla^2 \phi(x, y, z, t) - \frac{1}{c^2} \frac{\partial^2 \phi(x, y, z, t)}{\partial t^2} = 0$$

Plane wave solution for monochromatic wave (single angular frequency ω)

$$\phi(x, y, z, t) = \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

Diffraction angle (by an aperture)

$$\theta \sim \frac{\lambda}{d}$$

Angle of diffracted waves by a periodic structure

$$\sin \theta_n = \frac{n\lambda}{s}$$