Wave Propagation

Min Soo Bae

2016.09.19
mandoo113@yonsei.ac.kr
School of Electrical and Electronic Engineering, Yonsei University, Korea

Outline

Background

a. Plane waves and interference
b. Diffraction
c. Diffraction from periodic structures

Summary

Background

In the previous lecture...

1-D wave equation

$$
\frac{\partial^{2} y}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}=0 \quad \text { c: wave velocity }
$$

For monochromatic wave (single angular frequency ω)

$$
\begin{array}{ll}
\phi(z, t)=Z(z) T(t) & \\
\frac{\partial^{2} \phi(z, t)}{\partial t^{2}}=-\omega^{2} \phi(z, t) & \omega: \text { angular frequency } \\
\frac{d^{2} Z(z)}{d z^{2}}+k^{2} Z(z)=0 & k^{2}=\frac{\omega^{2}}{c^{2}}
\end{array} \quad \text { :Helmholtz wave equation }
$$

a. Plane waves and interference

Wave equation in 3 dimensions

$$
\begin{array}{r}
\nabla^{2} \phi(x, y, z, t)-\frac{1}{c^{2}} \frac{\partial^{2} \phi(x, y, z, t)}{\partial t^{2}}=0 \\
\text { where } \nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{array}
$$

For monochromatic wave (single angular frequency ω)
Verifying plane wave solutions of the form when $k=\omega / c$

$$
\phi(x, y, z, t)=\exp [i(k \quad \bullet-\omega t)]
$$

where $\quad \mathbf{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}} \quad \mathbf{k}=k_{x} \hat{\mathbf{x}}+k_{y} \hat{\mathbf{y}}+k_{z} \hat{\mathbf{z}}$

a. Plane waves and interference

For monochromatic wave (single angular frequency ω)

Verifying plane wave solutions of the form when $\mathrm{k}=\mathrm{\omega} / \mathrm{c}$

$$
\begin{aligned}
& \nabla \exp [i(\mathbf{k} \text { •r }-\omega t)]=\left(\hat{\mathbf{x}} \frac{\partial}{\partial x}+\hat{\mathbf{y}} \frac{\partial}{\partial y}+\hat{\mathbf{z}} \frac{\partial}{\partial z}\right) \exp \left\{i\left[k_{x} x+k_{y} y+k_{z} z-\omega t\right]\right\} \\
& =i\left(\underline{k_{x} \hat{\mathbf{x}}}+k_{y} \hat{\mathbf{y}}+k_{z} \hat{\mathbf{z}}\right) \exp \left\{i\left[k_{x} x+k_{y} y+k_{z} z-\omega t\right]\right\} \\
& =i k \exp [i(k \bullet \boldsymbol{r}-\omega t)] \\
& \nabla^{2} \exp [i(k \cdot \boldsymbol{r}-\omega t)]=\bar{\nabla} \cdot \nabla \exp [i(k \cdot \boldsymbol{r}-\omega t)] \\
& =\nabla \cdot(i \vec{k} \exp [i(k \cdot \boldsymbol{r}-\omega t)]) \\
& =i\left(k_{x} \frac{\partial}{\partial x}+k_{y} \frac{\partial}{\partial x}+k_{z} \frac{\partial}{\partial x}\right) \exp [i(k \cdot r-\omega t)] \\
& =-\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right) \exp [i(k \cdot r-\omega t)] \\
& =-k^{2} \exp [i(k \cdot r-\omega t)]
\end{aligned}
$$

a. Plane waves and interference

For monochromatic wave (single angular frequency ω)

Verifying plane wave solutions of the form when $k=\omega / c$

Since $\frac{\partial^{2}}{\partial t^{2}} \exp [i(k \cdot \boldsymbol{r}-\omega t)]=-\omega^{2} \exp [i(k \cdot \boldsymbol{r}-\omega t)]$,

$$
\text { with } \nabla^{2} \exp [i(k \cdot \boldsymbol{r}-\omega t)]=-k^{2} \exp [i(k \cdot r-\omega t)]
$$

$$
\nabla^{2} \phi(x, y, z, t)-\frac{1}{c^{2}} \frac{\partial^{2} \phi(x, y, z, t)}{\partial t^{2}}=0
$$

choosing $k=\omega / c$,

$$
\underset{\omega / c}{\longrightarrow}-k^{2} \exp [i(k \cdot r-\omega t)]+\frac{\omega^{2}}{c^{2}} \exp [i(k \cdot r-\omega t)]=0
$$

$\phi(x, y, z, t)=\exp [i(\mathrm{k} \cdot \mathrm{r})-\omega t]$ is a solution for any vector direction \mathbf{k} provided $|\mathbf{k}|=\frac{\omega}{c}$

a. Plane waves and interference

Wave interference

Linearity of wave equation

A plane wave solution \mathbf{k}_{1}

A plane wave solution \mathbf{k}_{2}

Wave interference between 2 waves is also a solution of wave equation because of Linearity of wave equation

A plane wave solution $\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}$

b. Diffraction

What is Diffraction?

Diffraction refers to various phenomena which occur when a wave encounters an obstacle or a slit.

Interference is a phenomenon in which two waves superpose to form a resultant wave of greater, lower, or the same amplitude.

Huygens' principle

Christiaan Huygens (1629-1695)
Every unobstructed point on a wavefront will act a source of secondary spherical waves. The new wavefront is the surface tangent to all the secondary spherical waves.

b. Diffraction

Waves from an aperture

Waves from a point source
-Circular waves propagating from a point source

By putting huygens' sources between the aperture, wave from an aperture can be modeled.

b. Diffraction

Waves from a point source/an aperture

As the number of point sources increase, we have converged on a good description in this model!

b. Diffraction

Diffraction angle

If we look far away from a set of sources,

High frequency speakers : very directional
Low frequency speakers : not very directional

참고 사이트
http://yjh-phys.tistory.com/1459

c. Diffraction from periodic structures

What does the back-scattered light look like?

Concentric circle

c. Diffraction from periodic structures

What does the back-scattered look like?

Zeroth order diffraction
All of the sources add up in phase to generate a phase going back
An upward or downward direction is also possible

c. Diffraction from periodic structures

What does the back-scattered look like?

Larger scatterers seperation gives beam closer in angle

c. Diffraction from periodic structures

Calculate the angle Θ of diffracted waves

Larger scatterers seperation gives beam closer in angle

c. Diffraction from periodic structures

Calculate the angle 0 of diffracted waves

First order diffraction

Second order diffraction

(negative)
First order diffraction

Summary

Wave equation in 3 dimensions

$$
\nabla^{2} \phi(x, y, z, t)-\frac{1}{c^{2}} \frac{\partial^{2} \phi(x, y, z, t)}{\partial t^{2}}=0
$$

Plane wave solution for monochromatic wave (single angular frequency ω)

$$
\phi(x, y, z, t)=\exp [i(\mathrm{k} \cdot \mathrm{r}-\omega t)]
$$

Diffraction angle (by an aperture)

$$
\theta \sim \frac{\lambda}{d}
$$

Angle of diffracted waves by a periodic structure

$$
\sin \theta_{n}=\frac{n \lambda}{s}
$$

