Functions and Dirac notation

Park Chun Taek

School of Electrical and Electronic Engineering, Yonsei University, Korea

Contents

Functions as vectors

Dirac notation

Functions as vectors

- Functions

$$
\begin{aligned}
& x_{1} \rightarrow f\left(x_{1}\right) \\
& x_{2} \rightarrow f\left(x_{2}\right)
\end{aligned}
$$

- Vector of function

$$
\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
\vdots
\end{array}\right]
$$

- We do this for many values of x to represent another calculation result.

Functions as vectors

- Probability density function

$$
\int|f(x)|^{2} d x \cong\left[\begin{array}{llll}
f^{*}\left(x_{1}\right) & f^{*}\left(x_{2}\right) & f^{*}\left(x_{3}\right) & \cdots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
\vdots
\end{array}\right] \delta x
$$

- The integration can be approximated to the product of row vector and column vector.
- Row vector and column vector can be express by simple notation.
- Dirac "bra-ket" represents a row vector and a column vector
- Notation with column vector of a function
- "ket" notation $\longrightarrow|f(x)\rangle \equiv \mid f\left(x_{2}\right) \sqrt{\delta x}$
where $\delta x \rightarrow 0, \sqrt{\delta x}$ for normalization
<"ket" notation refers to a column vector of a function. >
- Similarly, "bra" notation is defined.
- "bra" notation is a version of row vector from a function.

$$
\langle f(x)| \equiv\left[\begin{array}{llll}
f^{*}\left(x_{1}\right) \sqrt{\delta x} & f^{*}\left(x_{2}\right) \sqrt{\delta x} & f^{*}\left(x_{3}\right) \sqrt{\delta x} & \cdots
\end{array}\right]
$$

where $\delta x \rightarrow 0, \sqrt{\delta x}$ for normalization

- Note that "bra" notation is a vector with complex conjugated components.
- Both "bra-ket" notations refer to the exactly same function.

Dirac "bra-ket" notation

- Assume a row vector

$$
\left[\begin{array}{llll}
a_{1}^{*} & a_{2}^{*} & a_{3}^{*} & \cdots
\end{array}\right]
$$

Then, we call this row vector as the

- Hermitian adjoint
- Hermitian transpose
- adjoint

- This Hermitian adjoint is expressed by the character "†" as a superscription.

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots
\end{array}\right]^{\dagger}=\left[\begin{array}{llll}
a_{1}^{*} & a_{2}^{*} & a_{3}^{*} & \cdots
\end{array}\right]
$$

- From this relation, the "bra" notation is the Hermitian adjoint of the "ket" notation.

$$
(|f\rangle)^{\dagger}=\langle f| \quad(\langle f|)^{\dagger}=|f\rangle
$$

Dirac "bra-ket" notation

- If we consider $f(x)$ as a vector and add "bra-ket" notation,

$$
\begin{aligned}
& \int|f(x)|^{2} d x \equiv\left[\begin{array}{llll}
f^{*}\left(x_{1}\right) \sqrt{\delta x} & f^{*}\left(x_{2}\right) \sqrt{\delta x} & f^{*}\left(x_{3}\right) \sqrt{\delta x} & \cdots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{2}\right) \sqrt{\delta x} \\
f\left(x_{3}\right) \sqrt{\delta x} \\
\vdots
\end{array}\right] \\
& \quad \equiv \sum_{n} f^{*}\left(x_{n}\right) \sqrt{\delta x} f\left(x_{n}\right) \sqrt{\delta x} \\
& \quad \equiv\langle f(x) \mid f(x)\rangle
\end{aligned}
$$

So, the integration can be expressed as the "bra-ket" notation

Dirac "bra-ket" notation

- Expansion to a quantum mechanical wave function,

$$
f(x)=\sum_{n} c_{n} \psi_{n}(x)
$$

we can write the function as the "bra"

$$
\langle f(x)| \equiv\left[\begin{array}{llll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*} & \cdots
\end{array}\right]
$$

and the "ket"

$$
|f(x)\rangle \equiv\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots
\end{array}\right]
$$

Dirac "bra-ket" notation

- We can evaluate

$$
\begin{aligned}
\int|f(x)|^{2} d x & \equiv \int f^{*}(x) f(x) d x \equiv \int\left[\sum_{n} c_{n}^{*} \psi_{n}^{*}(x)\right]\left[\sum_{m} c_{m} \psi_{m}(x)\right] d x \\
& \equiv \sum_{n, m} c_{n}^{*} c_{m} \int \psi_{n}^{*}(x) \psi_{m}(x) d x \equiv \sum_{n, m} c_{n}^{*} c_{m} \delta_{n m} \equiv \sum_{n}\left|c_{n}\right|^{2} \\
& \equiv\left[\begin{array}{llll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*} & \cdots
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots
\end{array}\right] \equiv\langle f(x) \mid f(x)\rangle
\end{aligned}
$$

So, we can express the calculation more simply.

Q \& A

