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Lesson 14: Vector spaces, operators and matrices
Quantum Mechanics for Electronical And Electronics Engineerings
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• We need a “space” in which our vectors exist for a vector with three 

components.

• The vector can be visualized as a line starting from the origin with projected 

lengths a1, a2, and a3 along the x, y, and z axes respectively.

• For a function express as its value at a set of points, instead of 3 axes labeled 

x, y, and z

• We may have an infinite number of orthogonal axes labeled with their 

associated basis function e.g., n

• Just as we label axes in conventional space with unit vectors, one notation is x, 

y, and z for the unit vectors

• So also here we label the axes with the kets |n>
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• Geometrical space has a vector dot product that defines both the orthogonality

of the axes.

• And the components of a vector along those axes

• And similarly for the other components.

• Our vector space has an inner product that defines both the orthogonality of 

the basis functions

• As well as the components

Mathematical properties – existence of inner product

0ˆˆ yx

zyx ˆˆˆ zyx ffff  x̂ ffxwith

nmnm  

fc mm 
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• With respect to addition of vectors, both geometrical space and our vector space 

are commutative.

• Both the geometrical space and our vector space are linear in multiplying by 

constants.

• Our constants may be complex

• And the inner product is linear both in multiplying by constants.

• And in superposition of vectors

Mathematical properties – addition of vectors, linearity

abba  fggf 

and associate

cbacba  )()(     hgfhgf 

baba ccc  )(   gcfcgfc 

)()( baba  cc gfccgf 

  hfgfhgf 
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• There is a well-define “length” to a vector formally a “norm”

• In both cases, any vector in the space can be represented to an arbitrary degree 

of accuracy.

• As a linear combination of the basis vectors, this is the completeness 

requirement on the basis set

• In vector spaces this property of the vector space itself is sometimes described 

as “completeness.”

Mathematical properties – norm of a vector, completeness

)( aaa 

fff 
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• In geometrical space, the length ax, ay, and az of the vector’s components are 

real, so the inner product (vector dot product) is commutative

• But with complex coefficients rather than real lengths, we choose a non-

commutative inner product of the form

• This ensures that             is real even if we word with complex numbers as 

required for it to form a useful norm.

Mathematical properties – commutation and inner product

abba 

*
fggf 

ff
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• A function turns one number, the argument into another the result.

• An operator turns one function into another in the vector space representation of 

a function.

• An operator turns one vector into another.

• Suppose that we are constructing the new function g(y) from the function f(x) by 

acting an f(x) with the operator

• The variable x and y might be the same kind of variable as in the case where the 

operator corresponds to differentiation of the function

Operators

Â

)()( xf
dx

d
xg 
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• The variable x and y might be quite different as in the case of a Fourier 

transform operation where x might represent time and y might represent 

frequency.

• A standart notation for writing any such operation on a function is

• This should be read as     operating on f(x) 

• For A to be the most general operation possible, it should be possible for the 

value of g(y)

 



dxiyxxfyg )exp()(
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1
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

)(ˆ)( xfAyg 

Operators
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• We are interested here solely in linear operators

• They are the only ones we will use in quantum mechanics, because of the 

fundamental linearity of quantum mechanics

• A linear operator has the following characteristics

for any complex number c

• Let us consider the most general way we could have the function g(y) at some 

specific value y1 of its argument.

• That is, g(y1) be related to the values of f(x) for possibly all values of x and still 

retain the linearity properties for this relation.

Linear operators

  )(ˆ)(ˆ)()(ˆ xhAxfAxhxfA 

  )(ˆ)(ˆ xfAcxcfA 
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• Think of the function f(x)

• As being represented by a list of values f(x1), f(x2), f(x3),… just as we did when 

considering f(x) as a vector

• We can take the values of x to be as closely spaced as a we want.

• We believe that this representation can give us as accurate a representation of 

f(x) for any calculation we need to perform.

• Then we propose that for a linear operation the value of g(y1) might be related to 

the values of f(x) by a relation of the form

where the aij are complex constants

Consequences of linearity for operators

 )()()()( 3132121111 xfaxfaxfayg



11/19

• This form shows the linearity behavior we want

• If we replaced f(x) by f(x)+h(x) ,then we would have

• As required for a linear operator relation from

                 ...3313221211111  xhxfaxhxfaxhxfayg

      ...313212111  xfaxfaxfa

      ...313212111  xhaxhaxha

        xhAxfAxhxfA ˆˆˆ 

Consequences of linearity for operators

 )()()()( 3132121111 xfaxfaxfayg
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• And, in this form 

• If we replaced f(x) by cf(x), then we would have

• As required for a linear operator relation from

        ...3132121111  xfaxfaxfayg

        ...3132121111  xcfaxcfaxcfayg

      ...313212111  xfaxfaxfac

    xfAcxcfA ˆˆ 

Consequences of linearity for operators
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• Now consider whether this form

is as general as it could be and still be a linear relation.

• We can see this by trying to add other powers and “cross terms” of f(x)

• Any more complicated relation of g(y1) to f(x) could presumably be written as a 

power series in f(x) possibly involving f(x) for different values of x that is, “cross 

terms”

• If we were to add higher powers of f(x) such as [f(x)]2, or cross terms such as 

f(x1)f(x2) in the series, it would no longer have the required linear behavior of

• We also cannot add a constant term to this series, that would violate the second 

linearity condition

        ...3132121111  xfaxfaxfayg

        xhAxfAxhxfA ˆˆˆ 

    xfAcxcfA ˆˆ 

Consequences of linearity for operators
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• Hence we conclude

is the most general form possible for the relation between g(y1) and f(x),

if this relation is to correspond to a linear operator.

• To construct the entire function g(y), we should construct series like for each 

value of y

• If we write f(x) and g(y) as vectors then we can write all these series at once
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• We see that

• Can be written as

• Where the operator      can be written as a matrix
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)(ˆ)( xfAyg 

Â
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• Presuming functions can be represented as vectors, then linear operators can 

be represented by matrices.

• In Bra-ket notation, we can write      as

if we regard the ket as a vector

• We now regard the (linear) operator A as a matrix

Bra-ket notation and operators

)(ˆ)( xfAyg 

fAg ˆ
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• Because of the mathematical equivalence of matrices and linear operators, the 

algebra for such operators is identical to that of matrices

• In particular operators do not in general commute

is not in general equal to             for any arbitrary

• Whether or not operators commute is very important in quantum mechanics

• We discussed operators for the case of functions of position (e.g., x)

• But we can also use expansion coefficients on the basis sets

Consequences of linear operator algebra

fBA ˆˆ fAB ˆˆ f
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• We expanded and

• We could have followed a similar argument requiring each expansion coefficient di

depends linearly on all the expansion coefficients cn

• By similar arguments, we would deduce the most general linear relation between 

the vectors of expansion coefficients could be represented as a matrix.

• The bra-ket statement of the relation between f, g, and     remains unchanged as
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Generalization to expansion coefficients

Â

fAg ˆ


n

nn xcxf )()(  
n

nn xdxg )()( 
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• Operator     acting on the unit vector          

generates the vector            with generally a 

new length and direction.

• The matrix element                 is the projection 

of           onto the          axis

• Quite generally when writing an operator      as a matrix when using 

a basis set

• The matrix elements of that operator are

• We can now turn any linear operator into a matrix or example, for a 

simple one-dimensional spatial case

jiij AA 

Evaluating the matrix elements of an operator

Â

   dxxAxA jiij   ˆ*

j

Â j

jAˆ

ji A ˆ

jAˆ j


