Lesson 14: Vector spaces, operators and matrices

Quantum Mechanics for Electronical And Electronics Engineerings $\underline{2014314006 \text { 인치후 }}$

$$
\hat{A} \equiv\left[\begin{array}{cccc}
\left\langle\psi_{1}\right| \hat{A}\left|\psi_{1}\right\rangle & \left\langle\psi_{1}\right| \hat{A}\left|\psi_{2}\right\rangle & \left\langle\psi_{1}\right| \hat{A}\left|\psi_{3}\right\rangle & \cdots \\
\left\langle\psi_{2}\right| \hat{A}\left|\psi_{1}\right\rangle & \left\langle\psi_{2}\right| \hat{A}\left|\psi_{2}\right\rangle & \left\langle\psi_{2}\right| \hat{A}\left|\psi_{3}\right\rangle & \cdots \\
\left\langle\psi_{3}\right| \hat{A}\left|\psi_{1}\right\rangle & \left\langle\psi_{3}\right| \hat{A}\left|\psi_{2}\right\rangle & \left\langle\psi_{3}\right| \hat{A}\left|\psi_{3}\right\rangle & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Vector Spaces

- We need a "space" in which our vectors exist for a vector with three components.

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

- The vector can be visualized as a line starting from the origin with projected lengths a_{1}, a_{2}, and a_{3} along the x, y, and z axes respectively.
- For a function express as its value at a set of points, instead of 3 axes labeled x, y, and z
- We may have an infinite number of orthogonal axes labeled with their associated basis function e.g., ψ_{n}
- Just as we label axes in conventional space with unit vectors, one notation is x, y, and z for the unit vectors
- So also here we label the axes with the kets $\left|\psi_{\mathrm{n}}\right\rangle$

Mathematical properties - existence of inner product

- Geometrical space has a vector dot product that defines both the orthogonality of the axes.

$$
\hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=0
$$

- And the components of a vector along those axes

$$
f=f_{x} \hat{\mathbf{x}}+f_{y} \hat{\mathbf{y}}+f_{z} \hat{\mathbf{z}} \quad \text { with } \quad f_{x}=f \cdot \hat{\mathbf{x}}
$$

- And similarly for the other components.
- Our vector space has an inner product that defines both the orthogonality of the basis functions

$$
\left\langle\psi_{m} \mid \psi_{n}\right\rangle=\delta_{n m}
$$

- As well as the components $c_{m}=\left\langle\psi_{m} \mid f\right\rangle$

Mathematical properties - addition of vectors, linearity

- With respect to addition of vectors, both geometrical space and our vector space are commutative.

$$
\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a} \quad|f\rangle+|g\rangle=|g\rangle+|f\rangle
$$

and associate

$$
\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c} \quad|f\rangle+(|g\rangle+|h\rangle)=(|f\rangle+|g\rangle)+|h\rangle
$$

- Both the geometrical space and our vector space are linear in multiplying by constants.

$$
c(\mathbf{a}+\mathbf{b})=c \mathbf{a}+c \mathbf{b} \quad c(|f\rangle+|g\rangle)=c|f\rangle+c|g\rangle
$$

- Our constants may be complex
- And the inner product is linear both in multiplying by constants.

$$
\mathbf{a} \cdot(c \mathbf{b})=c(\mathbf{a} \cdot \mathbf{b}) \quad\langle f \mid c g\rangle=c\langle f \mid g\rangle
$$

- And in superposition of vectors

$$
\langle f(|g\rangle+|h\rangle)=\langle f \mid g\rangle+\langle f \mid h\rangle
$$

Mathematical properties - norm of a vector, completeness

- There is a well-define "length" to a vector formally a "norm"

$$
\begin{aligned}
& \|\mathbf{a}\|=\sqrt{(\mathbf{a} \cdot \mathbf{a})} \\
& \|f\|=\sqrt{\langle f \mid f\rangle}
\end{aligned}
$$

- In both cases, any vector in the space can be represented to an arbitrary degree of accuracy.
- As a linear combination of the basis vectors, this is the completeness requirement on the basis set
- In vector spaces this property of the vector space itself is sometimes described as "completeness."

Mathematical properties - commutation and inner product

- In geometrical space, the length $\mathrm{a}_{\mathrm{x}}, \mathrm{a}_{\mathrm{y}}$, and a_{z} of the vector's components are real, so the inner product (vector dot product) is commutative

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}
$$

- But with complex coefficients rather than real lengths, we choose a noncommutative inner product of the form

$$
\langle f \mid g\rangle=\langle g \mid f\rangle^{*}
$$

- This ensures that $\langle f \mid f\rangle$ is real even if we word with complex numbers as required for it to form a useful norm.

Operators

- A function turns one number, the argument into another the result.
- An operator turns one function into another in the vector space representation of a function.
- An operator turns one vector into another.
- Suppose that we are constructing the new function $g(y)$ from the function $f(x)$ by acting an $f(x)$ with the operator \hat{A}
- The variable x and y might be the same kind of variable as in the case where the operator corresponds to differentiation of the function

$$
g(x)=\frac{d}{d x} f(x)
$$

Operators

- The variable x and y might be quite different as in the case of a Fourier transform operation where x might represent time and y might represent frequency.
- A standart notation for writing any such operation on a function is

$$
g(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \exp (-i y x) d x
$$

- This should be read as \hat{A} operating on $f(x)$

$$
g(y)=\hat{A} f(x)
$$

- For A to be the most general operation possible, it should be possible for the value of $g(y)$

Linear operators

- We are interested here solely in linear operators
- They are the only ones we will use in quantum mechanics, because of the fundamental linearity of quantum mechanics
- A linear operator has the following characteristics

$$
\begin{aligned}
\hat{A}[f(x)+h(x)] & =\hat{A} f(x)+\hat{A} h(x) \\
\hat{A}[c f(x)] & =c \hat{A} f(x)
\end{aligned}
$$

for any complex number c

- Let us consider the most general way we could have the function $g(y)$ at some specific value y_{1} of its argument.
- That is, $g\left(y_{1}\right)$ be related to the values of $f(x)$ for possibly all values of x and still retain the linearity properties for this relation.

Consequences of linearity for operators

- Think of the function $f(x)$
- As being represented by a list of values $f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots$ just as we did when considering $f(x)$ as a vector
- We can take the values of x to be as closely spaced as a we want.
- We believe that this representation can give us as accurate a representation of $f(x)$ for any calculation we need to perform.
- Then we propose that for a linear operation the value of $g\left(y_{1}\right)$ might be related to the values of $f(x)$ by a relation of the form

$$
g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots
$$

where the $a_{i j}$ are complex constants

Consequences of linearity for operators

- This form shows the linearity behavior we want

$$
g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots
$$

- If we replaced $f(x)$ by $f(x)+h(x)$,then we would have

$$
\begin{aligned}
g\left(y_{1}\right)= & a_{11}\left[f\left(x_{1}\right)+h\left(x_{1}\right)\right]+a_{12}\left[f\left(x_{2}\right)+h\left(x_{2}\right)\right]+a_{13}\left[f\left(x_{3}\right)+h\left(x_{3}\right)\right]+\ldots \\
= & a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots \\
& +a_{11} h\left(x_{1}\right)+a_{12} h\left(x_{2}\right)+a_{13} h\left(x_{3}\right)+\ldots
\end{aligned}
$$

- As required for a linear operator relation from

$$
\hat{A}[f(x)+h(x)]=\hat{A} f(x)+\hat{A} h(x)
$$

Consequences of linearity for operators

- And, in this form $g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots$
- If we replaced $f(x)$ by $c f(x)$, then we would have

$$
\begin{aligned}
g\left(y_{1}\right) & =a_{11} c f\left(x_{1}\right)+a_{12} c f\left(x_{2}\right)+a_{13} c f\left(x_{3}\right)+\ldots \\
& =c\left[a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots\right]
\end{aligned}
$$

- As required for a linear operator relation from

$$
\hat{A}[c f(x)]=c \hat{A} f(x)
$$

Consequences of linearity for operators

- Now consider whether this form

$$
g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots
$$

is as general as it could be and still be a linear relation.

- We can see this by trying to add other powers and "cross terms" of $f(x)$
- Any more complicated relation of $g\left(y_{1}\right)$ to $f(x)$ could presumably be written as a power series in $f(x)$ possibly involving $f(x)$ for different values of x that is, "cross terms"
- If we were to add higher powers of $f(x)$ such as $[f(x)]^{2}$, or cross terms such as $f\left(x_{1}\right) f\left(x_{2}\right)$ in the series, it would no longer have the required linear behavior of

$$
\hat{A}[f(x)+h(x)]=\hat{A} f(x)+\hat{A} h(x)
$$

- We also cannot add a constant term to this series, that would violate the second linearity condition

$$
\hat{A}[c f(x)]=c \hat{A} f(x)
$$

Generality of the proposed linear operation

- Hence we conclude

$$
g\left(y_{1}\right)=a_{11} f\left(x_{1}\right)+a_{12} f\left(x_{2}\right)+a_{13} f\left(x_{3}\right)+\ldots
$$

is the most general form possible for the relation between $g\left(y_{1}\right)$ and $f(x)$, if this relation is to correspond to a linear operator.

- To construct the entire function $g(y)$, we should construct series like for each value of y
- If we write $f(x)$ and $g(y)$ as vectors then we can write all these series at once

$$
\left[\begin{array}{c}
g\left(y_{1}\right) \\
g\left(y_{2}\right) \\
g\left(y_{3}\right) \\
\vdots
\end{array}\right]=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
\vdots
\end{array}\right]
$$

Construction of the entire operator

- We see that

$$
\left[\begin{array}{c}
g\left(y_{1}\right) \\
g\left(y_{2}\right) \\
g\left(y_{3}\right) \\
\vdots
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
\vdots
\end{array}\right]
$$

- Can be written as $g(y)=\hat{A} f(x)$
- Where the operator \hat{A} can be written as a matrix

$$
\hat{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Bra-ket notation and operators

- Presuming functions can be represented as vectors, then linear operators can be represented by matrices.
- In Bra-ket notation, we can write $g(y)=\hat{A} f(x)$ as

$$
|g\rangle=\hat{A}|f\rangle
$$

if we regard the ket as a vector

- We now regard the (linear) operator A as a matrix

Consequences of linear operator algebra

- Because of the mathematical equivalence of matrices and linear operators, the algebra for such operators is identical to that of matrices
- In particular operators do not in general commute
$\hat{A} \hat{B}|f\rangle$ is not in general equal to $\hat{B} \hat{A}|f\rangle$ for any arbitrary $|f\rangle$
- Whether or not operators commute is very important in quantum mechanics
- We discussed operators for the case of functions of position (e.g., x)
- But we can also use expansion coefficients on the basis sets

Generalization to expansion coefficients

- We expanded $f(x)=\sum_{n} c_{n} \psi_{n}(x)$ and $g(x)=\sum_{n} d_{n} \psi_{n}(x)$
- We could have followed a similar argument requiring each expansion coefficient d_{i} depends linearly on all the expansion coefficients c_{n}
- By similar arguments, we would deduce the most general linear relation between the vectors of expansion coefficients could be represented as a matrix.

$$
\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & \ldots \\
A_{21} & A_{22} & A_{23} & \ldots \\
A_{31} & A_{32} & A_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots
\end{array}\right]
$$

- The bra-ket statement of the relation between f, g, and \hat{A} remains unchanged as

$$
|g\rangle=\hat{A}|f\rangle
$$

Evaluating the matrix elements of an operator

- Quite generally when writing an operator \hat{A} as a matrix when using a basis set $\left|\psi_{j}\right\rangle$
- The matrix elements of that operator are $A_{i j}=\left\langle\psi_{i}\right| A\left|\psi_{j}\right\rangle$
- We can now turn any linear operator into a matrix or example, for a simple one-dimensional spatial case

$$
A_{i j}=\int \psi_{i}^{*}(x) \hat{A} \psi_{j}(x) d x
$$

- Operator \hat{A} acting on the unit vector $\left|\psi_{j}\right\rangle$ generates the vector $\left.\hat{A} \psi_{j}\right\rangle$ with generally a new length and direction.
- The matrix element $\left\langle\psi_{i} \mid \hat{A} \psi_{j}\right\rangle$ is the projection of $\hat{A}\left|\psi_{j}\right\rangle$ onto the $\left\langle\psi_{j}\right\rangle$ axis

