Lesson 14: Vector spaces, operators and matrices

Quantum Mechanics for Electronical And Electronics Engineerings 2014314006 인치훈

Vector Spaces

 We need a "space" in which our vectors exist for a vector with three components.

 $\begin{vmatrix} a_1 \\ a_2 \end{vmatrix}$

- The vector can be visualized as a line starting from the origin with projected lengths a₁, a₂, and a₃ along the x, y, and z axes respectively.
- For a function express as its value at a set of points, instead of 3 axes labeled x, y, and z
- We may have an infinite number of **orthogonal axes** labeled with their associated basis function e.g., ψ_n
- Just as we label axes in conventional space with unit vectors, one notation is x, y, and z for the unit vectors
- So also here we label the axes with the kets $|\psi_n\rangle$

Mathematical properties – existence of inner product

- Geometrical space has a vector dot product that defines both the orthogonality of the axes.
 - $\hat{\mathbf{x}}\cdot\hat{\mathbf{y}}=0$
- And the components of a vector along those axes

 $f = f_x \hat{\mathbf{x}} + f_y \hat{\mathbf{y}} + f_z \hat{\mathbf{z}}$ with $f_x = f \cdot \hat{\mathbf{x}}$

- And similarly for the other components.
- Our vector space has an inner product that defines both the orthogonality of the basis functions

$$\langle \psi_m | \psi_n \rangle = \delta_{nm}$$

• As well as the components $c_m = \langle \psi_m | f \rangle$

Mathematical properties – addition of vectors, linearity

• With respect to addition of vectors, both geometrical space and our vector space are **commutative**.

 $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ $|f\rangle + |g\rangle = |g\rangle + |f\rangle$

and associate

$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$
 $|f\rangle + (|g\rangle + |h\rangle) = (|f\rangle + |g\rangle) + |h\rangle$

 Both the geometrical space and our vector space are linear in multiplying by constants.

$$c(\mathbf{a}+\mathbf{b}) = c\mathbf{a}+c\mathbf{b}$$
 $c(|f\rangle+|g\rangle)=c|f\rangle+c|g\rangle$

- Our constants may be **complex**
- And the inner product is linear both in multiplying by constants.

$$\mathbf{a} \cdot (c\mathbf{b}) = c(\mathbf{a} \cdot \mathbf{b}) \qquad \langle f | cg \rangle = c \langle f | g \rangle$$

And in superposition of vectors

$$\langle f | (|g\rangle + |h\rangle) = \langle f | g\rangle + \langle f | h\rangle$$

Mathematical properties – norm of a vector, completeness

• There is a well-define "length" to a vector formally a "norm"

$$\|\mathbf{a}\| = \sqrt{(\mathbf{a} \cdot \mathbf{a})}$$
$$\|f\| = \sqrt{\langle f | f \rangle}$$

- In both cases, any vector in the space can be represented to an arbitrary degree of accuracy.
- As a linear combination of the basis vectors, this is the completeness requirement on the basis set
- In vector spaces this property of the vector space itself is sometimes described as "completeness."

Mathematical properties – commutation and inner product

 In geometrical space, the length a_x, a_y, and a_z of the vector's components are real, so the inner product (vector dot product) is commutative

 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

 But with complex coefficients rather than real lengths, we choose a noncommutative inner product of the form

$$\langle f | g
angle = \langle g | f
angle^*$$

• This ensures that $\langle f | f \rangle$ is real even if we word with complex numbers as required for it to form a useful norm.

Operators

- A function turns one number, the argument into another the result.
- An **operator** turns one function into another in the vector space representation of a function.
- An **operator** turns one vector into another.
- Suppose that we are constructing the new function g(y) from the function f(x) by acting an f(x) with the operator Â
- The variable x and y might be the same kind of variable as in the case where the operator corresponds to differentiation of the function

$$g(x) = \frac{d}{dx}f(x)$$

Operators

- The variable x and y might be quite different as in the case of a Fourier transform operation where x might represent time and y might represent frequency.
- A standart notation for writing any such operation on a function is

$$g(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp(-iyx) dx$$

• This should be read as \hat{A} operating on f(x)

$$g(y) = \hat{A}f(x)$$

 For A to be the most general operation possible, it should be possible for the value of g(y)

Linear operators

- We are interested here solely in **linear operators**
- They are the only ones we will use in quantum mechanics, because of the fundamental linearity of quantum mechanics
- A linear operator has the following characteristics

$$\hat{A}[f(x) + h(x)] = \hat{A}f(x) + \hat{A}h(x)$$
$$\hat{A}[cf(x)] = c\hat{A}f(x)$$

for any complex number *c*

- Let us consider the most general way we could have the function g(y) at some specific value y₁ of its argument.
- That is, $g(y_1)$ be related to the values of f(x) for possibly all values of x and still retain the linearity properties for this relation.

- Think of the function *f*(*x*)
- As being represented by a list of values $f(x_1)$, $f(x_2)$, $f(x_3)$,... just as we did when considering f(x) as a vector
- We can take the values of *x* to be as closely spaced as a we want.
- We believe that this representation can give us as accurate a representation of *f*(*x*) for any calculation we need to perform.
- Then we propose that for a linear operation the value of g(y1) might be related to the values of f(x) by a relation of the form

 $g(y_1) = a_{11}f(x_1) + a_{12}f(x_2) + a_{13}f(x_3) + \dots$

where the a_{ii} are complex constants

• This form shows the linearity behavior we want

 $g(y_1) = a_{11}f(x_1) + a_{12}f(x_2) + a_{13}f(x_3) + \dots$

• If we replaced f(x) by f(x)+h(x), then we would have

$$g(y_1) = a_{11}[f(x_1) + h(x_1)] + a_{12}[f(x_2) + h(x_2)] + a_{13}[f(x_3) + h(x_3)] + \dots$$

= $a_{11}f(x_1) + a_{12}f(x_2) + a_{13}f(x_3) + \dots$
+ $a_{11}h(x_1) + a_{12}h(x_2) + a_{13}h(x_3) + \dots$

• As required for a linear operator relation from

$$\hat{A}[f(x)+h(x)] = \hat{A}f(x) + \hat{A}h(x)$$

• And, in this form $g(y_1) = a_{11}f(x_1) + a_{12}f(x_2) + a_{13}f(x_3) + \dots$

• If we replaced f(x) by cf(x), then we would have

 $g(y_1) = a_{11}cf(x_1) + a_{12}cf(x_2) + a_{13}cf(x_3) + \dots$ $= c[a_{11}f(x_1) + a_{12}f(x_2) + a_{13}f(x_3) + \dots]$

• As required for a linear operator relation from

 $\hat{A}[cf(x)] = c\hat{A}f(x)$

• Now consider whether this form

 $g(y_1) = a_{11}f(x_1) + a_{12}f(x_2) + a_{13}f(x_3) + \dots$

is as general as it could be and still be a linear relation.

- We can see this by trying to add other powers and "cross terms" of f(x)
- Any more complicated relation of g(y₁) to f(x) could presumably be written as a
 power series in f(x) possibly involving f(x) for different values of x that is, "cross
 terms"
- If we were to add higher powers of f(x) such as $[f(x)]^2$, or cross terms such as $f(x_1)f(x_2)$ in the series, it would no longer have the required linear behavior of

$$\hat{A}[f(x)+h(x)] = \hat{A}f(x) + \hat{A}h(x)$$

• We also cannot add a constant term to this series, that would violate the second linearity condition

$$\hat{A}[cf(x)] = c\hat{A}f(x)$$

Generality of the proposed linear operation

• Hence we conclude

$$g(y_1) = a_{11}f(x_1) + a_{12}f(x_2) + a_{13}f(x_3) + \dots$$

is the most general form possible for the relation between $g(y_1)$ and f(x), if this relation is to correspond to a linear operator.

- To construct the entire function g(y), we should construct series like for each value of y
- If we write f(x) and g(y) as vectors then we can write all these series at once

$$\begin{bmatrix} g(y_1) \\ g(y_2) \\ g(y_3) \\ \vdots \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{21} & a_{22} & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ \vdots \end{bmatrix}$$

Construction of the entire operator

• We see that

$$\begin{bmatrix} g(y_1) \\ g(y_2) \\ g(y_3) \\ \vdots \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{21} & a_{22} & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ \vdots \end{bmatrix}$$

- Can be written as $g(y) = \hat{A}f(x)$
- Where the operator \hat{A} can be written as a matrix

$$\hat{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{21} & a_{22} & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Bra-ket notation and operators

- Presuming functions can be represented as vectors, then linear operators can be represented by matrices.
- In Bra-ket notation, we can write $g(y) = \hat{A}f(x)$ as

 $|g\rangle = \hat{A}|f\rangle$

if we regard the ket as a vector

• We now regard the (linear) operator A as a matrix

Consequences of linear operator algebra

- Because of the mathematical equivalence of matrices and linear operators, the algebra for such operators is identical to that of matrices
- In particular operators do not in general commute

 $\hat{A}\hat{B}ert f
angle$ is not in general equal to $ec{B}\hat{A}ert f
angle$ for any arbitrary ert f
angle

- Whether or not operators commute is very important in quantum mechanics
- We discussed operators for the case of functions of position (e.g., *x*)
- But we can also use expansion coefficients on the basis sets

Generalization to expansion coefficients

- We expanded $f(x) = \sum_{n} c_n \psi_n(x)$ and $g(x) = \sum_{n} d_n \psi_n(x)$
- We could have followed a similar argument requiring each expansion coefficient d_i depends linearly on all the expansion coefficients c_n
- By similar arguments, we would deduce the most general linear relation between the vectors of expansion coefficients could be represented as a matrix.

$$\begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \dots \\ A_{21} & A_{22} & A_{23} & \dots \\ A_{31} & A_{32} & A_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \end{bmatrix}$$

• The bra-ket statement of the relation between f, g, and \hat{A} remains unchanged as

$$|g\rangle = \hat{A}|f\rangle$$

Evaluating the matrix elements of an operator

- Quite generally when writing an operator \hat{A} as a matrix when using a basis set $\left|\psi_{j}\right\rangle$
- The matrix elements of that operator are $A_{ij} = \langle \psi \rangle$

$$A_{ij} = \langle \psi_i | A | \psi_j \rangle$$

• We can now turn any linear operator into a matrix or example, for a simple one-dimensional spatial case

$$A_{ij} = \int \psi_i^*(x) \hat{A} \psi_j(x) dx$$

- Operator \hat{A} acting on the unit vector $|\psi_j\rangle$ generates the vector $\hat{A}|\psi_j\rangle$ with generally a new length and direction.
- The matrix element $\langle \psi_i | \hat{A} | \psi_j \rangle$ is the projection of $\hat{A} | \psi_j \rangle$ onto the $| \psi_j \rangle$ axis

