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Outline

Quantum Mechanics for Scientists and Engineers

• Bilinear expansion of linear operators

• The identity operator

• Inverse and Unitary operators
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Bilinear expansion of linear operators
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 By acting with a specific operator

 Expand functions in a basis set
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Bilinear expansion of linear operators
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 Substituting                                     back into                         

 Expand functions in a basis set

 Remember that                          is simply a number 
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 So, switched multiplicative order
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Bilinear expansion of linear operators
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 This form

 Expand functions in a basis set

is referred to as a “bilinear expansion” of the operator

on the basis         and is analogous to the linear 

expansion of a vector on a basis 

 Though the Dirac notation is more general  11)(ˆ)( dxxfAxg
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Outer product
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 An expression of the form

 Bilinear expansion form

Contains an outer product of two vectors

 An inner product expression of the form
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fg

 An outer product expression of the form fg

Complex number

Matrix 
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Outer product
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 The specific summation 

is actually, then, a sum of matrices

ji

ji

ijAA 
,

ˆ

 In the matrix ji 

the element in the ith row and the jth column is 1, another's are 0
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The identity operator
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 In matrix form, the identity operator is

 The identity operator 

 In bra-ket form

where the 

The identity operator can be written

Î


i

iiI ˆ

i

form a complete basis for the space
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The identity operator
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 For an arbitrary function                            , we know 

 Proof 

 And, the multiplication          each side of

So 
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 By using,                                     .    So,  
i

ii ff  ffI ˆ



ADVANCED COMPUTATIONAL 

ELECTROMAGNETICS LAB

The identity operator
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 The statement

 Similarly, we can obtain
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Proof that the trace is independent of the 

basis
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 Consider the sum, 

 of the diagonal elements of an operator

S

on some complete orthonormal basis 


i

ii AS  ˆ

i

 And, suppose some other complete orthonormal basis

Â

i
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mmI ˆ

 In                                , we can insert an identity operator just before 
i

ii AS  ˆ Â

AAI ˆˆˆ 
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Proof that the trace is independent of the 

basis
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 Rearranging   
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Proof that the trace is independent of the 

basis
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 So, with now

 Using the
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 Hence the trace of an operator the sum of the diagonal elements 

is independent of the basis used to represent the operator

AIA ˆˆˆ 
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Inverse and projection operator 
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 Inverse operator

 For an operator       operating on an arbitrary function 

 Using the inverse operator

Â

1ˆ A

f

The inverse operator

fAAf ˆˆ 1

IAA ˆˆˆ 1 

 Projection operator

 For example,

the one corresponding to the specific vector

ffP ˆ In general has no inverse

f

because it projects all input vectors onto only one axis in the space



ADVANCED COMPUTATIONAL 

ELECTROMAGNETICS LAB

Unitary operator
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 Unitary operator

 One for which UU ˆˆ 1 

That is, its inverse is its Hermitian adjoint

Û

 The Hermitian adjoint is formed by reflecting on a -45 

degree line and taking the complex conjugate
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Unitary operator
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 Conservation of length for unitary operators

 For two matrices       and  Â

 That is, the Hermitian adjoint of the product is the 

“flipped round” product of the Hermitian adjoints

B̂

 Consider the unitary operator      and vectorsÛ oldf
oldg

oldnew fUf ˆ Using the operator
oldnew gUg ˆ

 Then,                                   So,Ugg oldnew
ˆ

 The unitary operation does not change the inner product

 The length of a vector is not changed by a unitary operator



ADVANCED COMPUTATIONAL 

ELECTROMAGNETICS LAB

Thank You for Your Attention,

Do You Have Any Questions?


