Quantum Mechanics for Scientists and Engineers

Sangin Kim

Advanced Computational Electromagnetics Lab
redkid@yonsei.ac.kr
Nov. 14 ${ }^{\text {th }}, 2016$

Quantum Mechanics for Scientists and Engineers

- Bilinear expansion of linear operators
- The identity operator
- Inverse and Unitary operators

Bilinear expansion of linear operators

* Expand functions in a basis set

$$
f(x)=\sum_{n} c_{n} \psi_{n}(x) \quad \text { or } \quad|f(x)\rangle=\sum_{n} c_{n}\left|\psi_{n}(x)\right\rangle
$$

- By acting with a specific operator \hat{A}

$$
|g\rangle=\hat{A}|f\rangle
$$

- Expand \boldsymbol{g} and \boldsymbol{f} on the basis set ψ_{i}

$$
|g\rangle=\sum_{i} d_{i}\left|\psi_{i}\right\rangle \quad|f\rangle=\sum_{j} c_{j}\left|\psi_{j}\right\rangle
$$

- From our matrix representation of $|g\rangle=\hat{A}|f\rangle$
$d_{i}=\sum_{j} A_{i j} c_{j} \quad$ we know that $\quad c_{j}=\left\langle\psi_{j} \mid f\right\rangle \quad$ So, $\quad d_{i}=\sum_{j} A_{i j}\left\langle\psi_{j} \mid f\right\rangle$

Bilinear expansion of linear operators

* Expand functions in a basis set
- Substituting $d_{i}=\sum_{j} A_{i j}\left\langle\psi_{j} \mid f\right\rangle$ back into $|g\rangle=\sum_{i} d_{i}\left|\psi_{i}\right\rangle$

$$
|g\rangle=\sum_{i, j} A_{i j}\left\langle\psi_{j} \mid f\right\rangle\left|\psi_{i}\right\rangle
$$

- Remember that $c_{j}=\left\langle\psi_{j} \mid f\right\rangle$ is simply a number
- So, switched multiplicative order

$$
\begin{aligned}
&|g\rangle=\sum_{i, j} A_{i j}\left|\psi_{i}\right\rangle\left\langle\psi_{j} \mid f\right\rangle=\left.=\underline{\left[\sum_{i, j} A_{i j}\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|\right]}\right] \\
& \hat{A} \equiv \sum_{i, j} A_{i j}\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|
\end{aligned}
$$

Bilinear expansion of linear operators

* Expand functions in a basis set
- This form $\hat{A} \equiv \sum_{i, j} A_{i j}\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|$ is referred to as a "bilinear expansion" of the operator \hat{A} on the basis $\left|\psi_{i}\right\rangle$ and is analogous to the linear expansion of a vector on a basis
- Though the Dirac notation is more general $g(x)=\int \hat{A} f\left(x_{1}\right) d x_{1}$

$$
\hat{A} \equiv \sum_{i, j} A_{i j} \psi_{i}(x) \psi_{j}^{*}\left(x_{1}\right)
$$

Outer product

* Bilinear expansion form
- An expression of the form $\hat{A} \equiv \sum_{i, j} A_{i j}\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|$

Contains an outer product of two vectors

- An inner product expression of the form $\langle g \mid f\rangle$
\square Complex number
- An outer product expression of the form $|g\rangle\langle f|$
\Rightarrow Matrix

Outer product

$$
|g\rangle\langle f|=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots
\end{array}\right]\left[\begin{array}{llll}
c_{1}^{*} & c_{2}^{*} & c_{3}^{*} & \ldots
\end{array}\right]=\left[\begin{array}{cccc}
d_{1} c_{1}^{*} & d_{1} c_{2}^{*} & d_{1} c_{3}^{*} & \ldots \\
d_{2} c_{1}^{*} & d_{2} c_{2}^{*} & d_{2} c_{3}^{*} & \ldots \\
d_{3} c_{1}^{*} & d_{3} c_{2}^{*} & d_{3} c_{3}^{*} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- The specific summation $\hat{A} \equiv \sum_{i, j} A_{i j}\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|$
is actually, then, a sum of matrices
- In the matrix $\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|$
the element in the ith row and the j th column is 1 , another's are 0

The identity operator

* The identity operator \hat{I}
- In matrix form, the identity operator is

$$
\hat{I}=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- In bra-ket form

The identity operator can be written

$$
\begin{aligned}
& \hat{I}=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \\
& \text { where the }\left|\psi_{i}\right\rangle
\end{aligned}
$$

form a complete basis for the space

The identity operator

* Proof

- For an arbitrary function $|f\rangle=\sum_{i} c_{i}\left|\psi_{i}\right\rangle$, we know $\quad c_{m}=\left\langle\psi_{m} \mid f\right\rangle$ So $\quad|f\rangle=\sum_{i}\left\langle\psi_{i} \mid f\right\rangle\left|\psi_{i}\right\rangle$
- And, the multiplication $|f\rangle$ each side of $\hat{I}=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$

$$
\hat{I}|f\rangle=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i} \mid f\right\rangle=\sum_{i}\left\langle\psi_{i} \mid f\right\rangle\left|\psi_{i}\right\rangle
$$

- By using, $\quad|f\rangle=\sum_{i}\left\langle\psi_{i} \mid f\right\rangle\left|\psi_{i}\right\rangle$. So, $\quad \hat{I}|f\rangle=|f\rangle$

The identity operator

* The statement $\hat{I}=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$

$$
\left|\psi_{1}\right\rangle=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right] \text { So that }\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & \ldots
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- Similarly, we can obtain

$$
\hat{I}=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Proof that the trace is independent of the basis

* Consider the sum, S
- of the diagonal elements of an operator \hat{A}
on some complete orthonormal basis $\left|\psi_{i}\right\rangle$

$$
S=\sum_{i}\left\langle\psi_{i}\right| \hat{A}\left|\psi_{i}\right\rangle
$$

- And, suppose some other complete orthonormal basis $\left|\phi_{i}\right\rangle$

$$
\hat{I}=\sum_{m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|
$$

- In $S=\sum_{i}\left\langle\psi_{i}\right| \hat{A}\left|\psi_{i}\right\rangle$, we can insert an identity operator just before \hat{A}

$$
\begin{gathered}
\hat{I} \hat{A}=\hat{A} \\
S=\sum_{i}\left\langle\psi_{i}\right| \hat{I} \hat{A}\left|\psi_{i}\right\rangle=\sum_{i}\left\langle\psi_{i}\right|\left(\sum_{m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|\right) \hat{A}\left|\psi_{i}\right\rangle
\end{gathered}
$$

Proof that the trace is independent of the basis

\star Rearranging $S=\sum_{i}\left\langle\psi_{i}\right| \hat{I} \hat{A}\left|\psi_{i}\right\rangle=\sum_{i}\left\langle\psi_{i}\left(\sum_{m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|\right) \hat{A} \mid \psi_{i}\right\rangle$
reordering the sums
moving the number $\left\langle\psi_{i} \mid \phi_{m}\right\rangle \quad=\sum_{m} \sum_{i}\left\langle\phi_{m} \left\lvert\, \frac{\hat{A}}{\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|} \phi_{m}\right.\right\rangle$
moving a sum and associating $=\sum_{m}\left\langle\phi_{m}\right| \hat{A}\left(\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)\left|\phi_{m}\right\rangle$
recognizing $\hat{I}=\sum_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad=\sum_{m}\left\langle\phi_{m}\right| \hat{A} \hat{I}\left|\phi_{m}\right\rangle$

Proof that the trace is independent of the basis

\star So, with now $\quad S=\sum_{i}\left\langle\psi_{i}\right| \hat{A}\left|\psi_{i}\right\rangle=\sum_{m}\left\langle\phi_{m}\right| \hat{A} \hat{I}\left|\phi_{m}\right\rangle$

- Using the $\hat{A} \hat{I}=\hat{A}$

$$
S=\sum_{i}\left\langle\psi_{i}\right| \hat{A}\left|\psi_{i}\right\rangle=\sum_{m}\left\langle\phi_{m}\right| \hat{A}\left|\phi_{m}\right\rangle
$$

- Hence the trace of an operator the sum of the diagonal elements is independent of the basis used to represent the operator

Inverse and projection operator

* Inverse operator
- For an operator \hat{A} operating on an arbitrary function $|f\rangle$

The inverse operator \hat{A}^{-1}

- Using the inverse operator $|f\rangle=\hat{A}^{-1} \hat{A}|f\rangle$

$$
\hat{A}^{-1} \hat{A}=\hat{I}
$$

* Projection operator
- For example, $\hat{P}=|f\rangle\langle f| \quad$ In general has no inverse because it projects all input vectors onto only one axis in the space the one corresponding to the specific vector $|f\rangle$

Unitary operator

* Unitary operator \hat{U}
- One for which $\hat{U}^{-1}=\hat{U}^{\dagger}$

That is, its inverse is its Hermitian adjoint

- The Hermitian adjoint is formed by reflecting on a -45 degree line and taking the complex conjugate

$$
\left[\begin{array}{cccc}
u_{11} & u_{12} & u_{13} & \cdots \\
u_{21} & u_{22} & u_{23} & \cdots \\
u_{31} & u_{32} & u_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]^{\dagger}=\left[\begin{array}{cccc}
u_{11}^{*} & u_{21}^{*} & u_{31}^{*} & \cdots \\
u_{12}^{*} & u_{22}^{*} & u_{32}^{*} & \cdots \\
u_{13}^{*} & u_{23}^{*} & u_{33}^{*} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Unitary operator

* Conservation of length for unitary operators
- For two matrices \hat{A} and \hat{B}

$$
(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}
$$

- That is, the Hermitian adjoint of the product is the "flipped round" product of the Hermitian adjoints
* Consider the unitary operator \hat{U} and vectors $\left|f_{\text {old }}\right\rangle\left|g_{\text {old }}\right\rangle$
- Using the operator $\quad\left|f_{\text {new }}\right\rangle=\hat{U}\left|f_{\text {old }}\right\rangle \quad\left|g_{\text {new }}\right\rangle=\hat{U}\left|g_{\text {old }}\right\rangle$
- Then, $\left\langle g_{\text {new }}\right|=\left\langle g_{\text {old }}\right| \hat{U}^{\dagger}$ So,

$$
\begin{aligned}
\left\langle g_{\text {nev }} \mid f_{\text {nev }}\right\rangle & =\left\langle g_{\text {old }}\right| \hat{U}^{\dagger} \hat{U}\left|f_{\text {old }}\right\rangle=\left\langle g_{\text {old }}\right| \hat{U}^{-1} \hat{U}\left|f_{\text {old }}\right\rangle=\left\langle g_{\text {old }}\right| \hat{I}\left|f_{\text {old }}\right\rangle \\
& =\left\langle g_{\text {old }} \mid f_{\text {old }}\right\rangle
\end{aligned}
$$

- The unitary operation does not change the inner product
- The length of a vector is not changed by a unitary operator

Thank You for Your Attention,

Do You Have Any Questions?

