Unitary and Hermitian operators

Moon-kang Jung
Dept. of Electrical \& Electronic Engineering
Yonsei University
2016. 11. 16

Unitary operators to change representations of

$$
\left|f_{\text {old }}\right\rangle=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots
\end{array}\right] \begin{gathered}
\text { With orthonormal } \\
\text { basis function } \\
\left|\psi_{n}\right\rangle
\end{gathered} \quad \Rightarrow \quad\left|f_{\text {new }}\right\rangle=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots
\end{array}\right] \quad \begin{aligned}
& \text { With new orthonormal } \\
& \begin{array}{l}
\text { basis function } \\
\left|\phi_{m}\right\rangle
\end{array}
\end{aligned}
$$

Coordinate transform matrix

$$
\begin{gathered}
\hat{U}=\left[\begin{array}{cccc}
u_{11} & u_{12} & u_{13} & \cdots \\
u_{21} & u_{22} & u_{23} & \cdots \\
u_{31} & u_{32} & u_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \text { where } u_{i j}=\left\langle\phi_{i} \mid \psi_{j}\right\rangle \\
\left|f_{\text {new }}\right\rangle=\hat{U}\left|f_{\text {old }}\right\rangle
\end{gathered}
$$

Unitary operators to change representations of vectors

- prove that is unitary

$$
\begin{aligned}
& \left(\hat{U}^{\dagger} \hat{U}\right)_{i j}=\sum_{m} u_{m i}^{*} u_{m j}=\sum_{m}\left\langle\phi_{m} \mid \psi_{i}\right\rangle^{*}\left\langle\phi_{m} \mid \psi_{j}\right\rangle=\sum_{m}\left\langle\psi_{i} \mid \phi_{m}\right\rangle\left\langle\phi_{m} \mid \psi_{j}\right\rangle \\
& \quad=\left\langle\psi_{i}\right|\left(\sum_{m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|\right)\left|\psi_{j}\right\rangle=\left\langle\psi_{i}\right| \hat{I}\left|\psi_{j}\right\rangle=\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j} \\
& \text { so } \hat{U}^{\dagger} \hat{U}=\hat{I}
\end{aligned}
$$

- Hence unitary operator \hat{U} is unitary since its Hermitian transpose is its inverse
- Hence any change in basis can be implemented with a unitary operator
- We can also say that any such change in representation to a new orthonormal basis is a unitary transform

Unitary operators to change

Consider a number such as $\langle g| \hat{A}|f\rangle$
With unitary \hat{U} operator to go from "old" to "new" systems
we can write $\left\langle g_{\text {new }}\right| \hat{A}_{\text {new }}\left|f_{\text {new }}\right\rangle=\left(\left|g_{\text {new }}\right\rangle\right)^{\dagger} \hat{A}_{\text {new }}\left|f_{\text {new }}\right\rangle$

$$
=\left(\hat{U}\left|g_{\text {old }}\right\rangle\right)^{\dagger} \hat{A}_{\text {new }}\left(\hat{U}\left|f_{\text {old }}\right\rangle\right)=\left\langle g_{\text {old }}\right| \hat{U}^{\dagger} \hat{A}_{\text {new }} \hat{U}\left|f_{\text {old }}\right\rangle
$$

Under the assumption $\left\langle g_{\text {new }}\right| \hat{A}_{\text {new }}\left|f_{\text {new }}\right\rangle=\left\langle g_{\text {old }}\right| \hat{A}_{\text {old }}\left|f_{\text {old }}\right\rangle$
Then we can derive $\hat{A}_{\text {new }}$

$$
\begin{aligned}
& \hat{A}_{\text {old }}=\hat{U}^{\dagger} \hat{A}_{\text {new }} \hat{U} \\
& \hat{U} \hat{A}_{\text {old }} \hat{U}^{\dagger}=\left(\hat{U} \hat{U}^{\dagger}\right) \hat{A}_{\text {new }}\left(\hat{U} \hat{U}^{\dagger}\right)=\hat{A}_{\text {new }}
\end{aligned}
$$

Hermitian operators

In matrix terms, with
$\hat{M}=\left[\begin{array}{cccc}M_{11} & M_{12} & M_{13} & \cdots \\ M_{21} & M_{22} & M_{23} & \cdots \\ M_{31} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]$ then $\hat{M}^{\dagger}=\left[\begin{array}{cccc}M_{11}^{*} & M_{21}^{*} & M_{31}^{*} & \cdots \\ M_{12}^{*} & M_{22}^{*} & M_{31}^{*} & \cdots \\ M_{13}^{*} & M_{23}^{*} & M_{33}^{*} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]$
A Hermitian operator is equal to its own Hermitian adjoint then

$$
M_{i j}=M_{j i}^{*}
$$

Hence, the diagonal elements of a Hermitian operator must be real

Hermitian operators

- statements
$(\langle g| \hat{M}|f\rangle)^{\dagger} \equiv(\langle g| \hat{M}|f\rangle)^{*} \quad$ For arbitrary $|f\rangle$ and $|g\rangle$ Since result is just a value

$$
\text { So } \begin{aligned}
(\langle g| \hat{M}|f\rangle)^{*} & \equiv(\langle g| \hat{M}|f\rangle)^{\dagger}=(\hat{M}|f\rangle)^{\dagger}(\langle g|)^{\dagger}=(|f\rangle)^{\dagger} \hat{M}^{\dagger}(\langle g|)^{\dagger} \\
& =\langle f| \hat{M}^{\dagger}|g\rangle
\end{aligned}
$$

In integral form

$$
\int g^{*}(x) \hat{M} f(x) d x=\left[\int f^{*}(x) \hat{M} g(x) d x\right]^{*}
$$

We can rewrite the right hand side using $(a b)^{*}=a^{*} b^{*}$

$$
\int g^{*}(x) \hat{M} f(x) d x=\int f(x)\{\hat{M} g(x)\}^{*} d x
$$

Hence,

$$
\int g^{*}(x) \hat{M} f(x) d x=\int\{\hat{M} g(x)\}^{*} f(x) d x
$$

Reality of eigenvalues

Suppose $\left|\psi_{n}\right\rangle$ is a normalized eigenvector of the Hermitian operator M with eigenvalue μ_{n} Then, by the definition

$$
\hat{M}\left|\psi_{n}\right\rangle=\mu_{n}\left|\psi_{n}\right\rangle
$$

therefore

$$
\left\langle\psi_{n}\right| \hat{M}\left|\psi_{n}\right\rangle=\mu_{n}\left\langle\psi_{n} \mid \psi_{n}\right\rangle=\mu_{n}
$$

But from the Hermiticity of \hat{M} we know

$$
\left\langle\psi_{n}\right| \hat{M}\left|\psi_{n}\right\rangle=\left(\left\langle\psi_{n}\right| \hat{M}\left|\psi_{n}\right\rangle\right)^{*}=\mu_{n}^{*} \quad \text { and hence } \mu_{n} \text { must be real }
$$

- Orthogonality of eigenfunctions for different eigenvalues

Trivially

$$
\begin{aligned}
& 0=\left\langle\psi_{m}\right| \hat{M}\left|\psi_{n}\right\rangle-\left\langle\psi_{m}\right| \hat{M}\left|\psi_{n}\right\rangle \\
& 0=\left(\left\langle\psi_{m}\right| \hat{M}\right)\left|\psi_{n}\right\rangle-\left\langle\psi_{m}\right|\left(\hat{M}\left|\psi_{n}\right\rangle\right) \\
& 0=\left(\hat{M}^{\dagger}\left|\psi_{m}\right\rangle\right)^{\dagger}\left|\psi_{n}\right\rangle-\left\langle\psi_{m}\right|\left(\hat{M}\left|\psi_{n}\right\rangle\right) \\
& 0=\left(\hat{M}\left|\psi_{m}\right\rangle\right)^{\dagger}\left|\psi_{n}\right\rangle-\left\langle\psi_{m}\right|\left(\hat{M}\left|\psi_{n}\right\rangle\right) \\
& 0=\left(\mu_{m}\left|\psi_{m}\right\rangle\right)^{\dagger}\left|\psi_{n}\right\rangle-\left\langle\psi_{m}\right| \mu_{n}\left|\psi_{n}\right\rangle \\
& 0=\mu_{m}\left(\left|\psi_{m}\right\rangle\right)^{\dagger}\left|\psi_{n}\right\rangle-\mu_{n}\left\langle\psi_{m} \mid \psi \psi_{n}\right\rangle \\
& 0=\left(\mu_{m}-\mu_{n}\right)\left\langle\psi_{m} \mid \psi_{n}\right\rangle
\end{aligned}
$$

By associativity
Using $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$
Using Hermiticity $\hat{M}=\hat{M}^{\dagger}$
Using $\hat{M}\left|\psi_{n}\right\rangle=\mu_{n}\left|\psi_{n}\right\rangle$
μ_{m} and μ_{n} are real numbers
Rearranging
But μ_{m} and μ_{n} are different, so $0=\left\langle\psi_{m} \mid \psi_{n}\right\rangle$ i.e., orthogonality

Matrix form of derivative operators

$$
\left[\begin{array}{ccccc}
\ddots & & \\
\cdots-\frac{1}{2 \delta x} & 0 & \frac{1}{2 \delta x} & 0 \cdots \\
\cdots 0 & -\frac{1}{2 \delta x} & 0 & \frac{1}{2 \delta x} \cdots \\
& & \ddots
\end{array}\right]\left[\begin{array}{c}
\vdots \\
f\left(x_{i}-\delta x\right) \\
f\left(x_{i}\right) \\
f\left(x_{i}+\delta x\right) \\
f\left(x_{i}+2 \delta x\right) \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\frac{f\left(x_{i}+\delta_{x}\right)-f\left(x_{i}-\delta x\right)}{2 \delta x} \\
\frac{f\left(x_{i}+2 \delta_{x}\right)-f\left(x_{i}\right)}{2 \delta x} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\left.\frac{d f}{d x}\right|_{x_{i}} \\
\left.\frac{d f}{d x}\right|_{x_{i}+\delta x} \\
\vdots
\end{array}\right]
$$

Note this matrix is antisymmetric in reflection about the diagonal and it is not Hermitian
Indeed somewhat surprisingly d / dx is not Hermitian $\int f_{n} f_{m}^{\prime} d x \neq\left(\int f_{n}^{\prime} f_{m} d x\right)^{*}$

We can formally "operate" on the function $f(x)$ by multiplying it by the function $V(x)$ to generate another function $g(x)=V(x) f(x)$
Since $V(x)$ is performing the role of an operator we can if we represent it as a diagonal matrix whose diagonal elements are
the values of the function at each of the different points
If $V(x)$ is real
then its matrix is Hermitian as required for \hat{H}

