The hydrogen atom

I. Solving the hydrogen atom problem
II. Informal solution for the relative motion

Multiple Particle Systems

Schrödinger's equation

Hamiltoninan operator for the entire system

Total energy of the entire system

State of the entire system

$$
\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla_{e}^{2}-\frac{\hbar^{2}}{2 m_{p}} \nabla_{p}^{2}+V\left(\left|\mathbf{r}_{e}-\mathbf{r}_{p}\right|\right)\right] \psi\left(x_{e}, y_{e}, z_{e}, x_{p}, y_{p}, z_{p}\right)
$$

$$
V\left(\left|\mathbf{r}_{e}-\mathbf{r}_{p}\right|\right)=-\frac{e^{2}}{4 \pi \varepsilon_{o}\left|\mathbf{r}_{e}-\mathbf{r}_{p}\right|}
$$

$$
=E \psi\left(x_{e}, y_{e}, z_{e}, x_{p}, y_{p}, z_{p}\right)
$$

Simplification of Coordinates

1. Relative positions coordinates

$$
x=x_{e}-x_{p} \quad y=y_{e}-y_{p} \quad z=z_{e}-z_{p}
$$

Relative vector: $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}=\left|\mathbf{r}_{e}-\mathbf{r}_{p}\right|
$$

2. Center of mass coordinates

$$
\begin{aligned}
\mathbf{R} & =\frac{m_{e} \mathbf{r}_{e}+m_{p} \mathbf{r}_{p}}{M} \quad M=m_{e}+m_{p} \\
& =X \mathbf{i}+Y \mathbf{j}+Z \mathbf{k} \\
X & =\frac{m_{e} x_{e}+m_{p} x_{p}}{M} \quad \text { Similar way to } \mathrm{Y} \text { and } \mathrm{Z}
\end{aligned}
$$

Second Derivatives Of Coordinates

Schrödinger's equation

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla_{e}^{2}-\frac{\hbar^{2}}{2 m_{p}} \nabla_{p}^{2}+V\left(\left|\mathbf{r}_{e}-\mathbf{r}_{p}\right|\right)\right] \psi\left(x_{e}, y_{e}, z_{e}, x_{p}, y_{p}, z_{p}\right)} \\
& \quad \text { Should be substituted! } \\
& \quad=E \psi\left(x_{e}, y_{e}, z_{e}, x_{p}, y_{p}, z_{p}\right) \\
& \left.\frac{\partial^{2}}{\partial x_{e}^{2}}\right|_{x_{p}}=\left.\frac{\partial}{\partial x_{e}}\right|_{x_{p}}\left(\left.\frac{\partial}{\partial x_{e}}\right|_{x_{p}}\right)=\left.\left.\frac{m_{e}}{M} \frac{\partial}{\partial x_{e}}\right|_{x_{p}} \frac{\partial}{\partial X}\right|_{x}+\left.\left.\frac{\partial}{\partial x_{e}}\right|_{x_{p}} \frac{\partial}{\partial x}\right|_{X} \\
& =\left.\left(\frac{m_{e}}{M}\right)^{2} \frac{\partial^{2}}{\partial X^{2}}\right|_{x}+\left.\frac{\partial^{2}}{\partial x^{2}}\right|_{X}+\frac{m_{e}}{M}\left(\left.\left.\frac{\partial}{\partial x}\right|_{X} \frac{\partial}{\partial X}\right|_{x}+\left.\left.\frac{\partial}{\partial X}\right|_{x} \frac{\partial}{\partial x}\right|_{X}\right)
\end{aligned}
$$

Similarly,

$$
\left.\frac{\partial^{2}}{\partial x_{p}^{2}}\right|_{x_{e}}=\left.\left(\frac{m_{p}}{M}\right)^{2} \frac{\partial^{2}}{\partial X^{2}}\right|_{x}+\left.\frac{\partial^{2}}{\partial x^{2}}\right|_{X}-\frac{m_{p}}{M}\left(\left.\left.\frac{\partial}{\partial x}\right|_{X} \frac{\partial}{\partial X}\right|_{x}+\left.\left.\frac{\partial}{\partial X}\right|_{x} \frac{\partial}{\partial x}\right|_{X}\right)
$$

Hamiltonian Operator With New Coordinates

$$
\begin{array}{rlr}
\frac{1}{m_{e}} \frac{\partial^{2}}{\partial x_{e}^{2}}+\frac{1}{m_{p}} \frac{\partial^{2}}{\partial x_{p}^{2}} & =\frac{m_{e}+m_{h}}{M^{2}} \frac{\partial^{2}}{\partial X^{2}}+\left(\frac{1}{m_{e}}+\frac{1}{m_{p}}\right) \frac{\partial^{2}}{\partial x^{2}} & \\
& =\frac{1}{M} \frac{\partial^{2}}{\partial X^{2}}+\frac{1}{\mu} \frac{\partial^{2}}{\partial x^{2}} & \begin{array}{c}
\mu=\frac{m_{e} m_{p}}{m_{e}+m_{p}} \\
\text { Reduced mass }
\end{array}
\end{array}
$$

$$
\begin{gathered}
\hat{H}=-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2}-\frac{\hbar^{2}}{2 \mu} \nabla_{\mathbf{r}}^{2}+V(\mathbf{r}) \\
\nabla_{\mathbf{R}}^{2} \equiv \frac{\partial^{2}}{\partial X^{2}}+\frac{\partial^{2}}{\partial Y^{2}}+\frac{\partial^{2}}{\partial Z^{2}} \quad \nabla_{\mathbf{r}}^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{gathered}
$$

Solving Schrödinger's Equation

Wave equation can be written as $\psi(\mathbf{R}, \mathbf{r})=S(\mathbf{R}) U(\mathbf{r})$
Schrödinger's equation

$$
-U(\mathbf{r}) \frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2} S(\mathbf{R})+S(\mathbf{R})\left[-\frac{\hbar^{2}}{2 \mu} \nabla_{\mathbf{r}}^{2}+V(\mathbf{r})\right] U(\mathbf{r})=E S(\mathbf{R}) U(\mathbf{r})
$$

$$
-\frac{1}{S(\mathbf{R})} \frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2} S(\mathbf{R})=E-\frac{1}{U(\mathbf{r})}\left[-\frac{\hbar^{2}}{2 \mu} \nabla_{\mathbf{r}}^{2}+V(\mathbf{r})\right] U(\mathbf{r})=\underset{\text { Constant }}{E_{\text {CoM }}}
$$

Solution For Two Particles

$$
-\frac{\hbar^{2}}{2 M} \nabla_{\mathbf{R}}^{2} S(\mathbf{R})=E_{\text {CoM }} S(\mathbf{R})
$$

Center of mass motion

Similar to single particle $S(\mathbf{R})=\exp (i \mathbf{K} \cdot \mathbf{R})$

$$
E_{C O M}=\frac{\hbar^{2} K^{2}}{2 M}
$$

$$
\left[-\frac{\hbar^{2}}{2 \mu} \nabla_{\mathbf{r}}^{2}+V(\mathbf{r})\right] U(\mathbf{r})=E_{H} U(\mathbf{r}) \begin{aligned}
& \text { Relative } \\
& \text { motion }
\end{aligned}
$$

$$
E_{H}=E-E_{C O M}
$$

Corresponds to the "internal" relative motion of the electron and proton

Rough Energy Calculation of Relative Motion

Potential energy

$$
\left\langle E_{\text {potential }}\right\rangle \approx-\frac{e^{2}}{4 \pi \varepsilon_{o} a_{o}} \quad \mathrm{a}_{0}: \text { Bohr radius }
$$

Kinetic energy
Kinetic energy operator: $-\left(\hbar^{2} / 2 \mu\right) \nabla^{2}$

$$
\begin{aligned}
\nabla^{2} & \sim \frac{\left[-\psi(0) / a_{o}\right]-\left[\psi(0) / a_{o}\right]}{2 a_{o}} \\
& \sim-\psi(0) / a_{o}^{2}
\end{aligned}
$$

$$
\left\langle\left\langle E_{\text {kinetic }}\right\rangle \approx \frac{\hbar^{2}}{2 \mu a_{o}^{2}}\right.
$$

Total energy

$$
\left\langle E_{\text {total }}\right\rangle=\left\langle E_{\text {kinetic }}\right\rangle+\left\langle E_{\text {potential }}\right\rangle \approx \frac{\hbar^{2}}{2 \mu a_{o}^{2}}-\frac{e^{2}}{4 \pi \varepsilon_{o} a_{o}}
$$

Bohr Radius and Rydberg Energy

$$
\left\langle E_{\text {totala }}\right\rangle=\left\langle E_{\text {kinetic }}\right\rangle+\left\langle E_{\text {potertial }}\right\rangle \approx \frac{\hbar^{2}}{2 \mu a_{o}^{2}}-\frac{e^{2}}{4 \pi \varepsilon_{o} a_{o}}
$$

Minimization of energy with $a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{e^{2} \mu} \sim 0.529 \AA$
Minimized energy $\left\langle E_{\text {ootal }}\right\rangle=-\frac{\hbar^{2}}{2 \mu a_{o}^{2}}=-\frac{\mu}{2}\left(\frac{e^{2}}{4 \pi \varepsilon_{o} \hbar}\right)^{2} \sim \underset{\substack{\text { Rydberg } \\ \text { Energy }}}{-13.6 \mathrm{eV}}$

