Quiz \#11 (Measurement and Expectation Value)

Oct. 26, 2016
Quantum Mechanics
Prof. Woo-Young Choi
Dept. of Electrical and Electronic Engineering
Yonsei University

Prob.1(1)

A particle with mass M is in the following superposition state in a onedimensional potential well with thickness L and two infinitely large potential barriers, $\psi(x, t)=\sqrt{\frac{1}{2}} \psi_{1}(x) \exp \left(-i \frac{E_{1}}{\hbar} t\right)+\sqrt{\frac{1}{3}} \psi_{2}(x) \exp \left(-i \frac{E_{2}}{\hbar} t\right)+\sqrt{\frac{1}{6}} \psi_{3}(x) \exp \left(-i \frac{E_{3}}{\hbar} t\right)$, where $\psi_{1}(x), \psi_{2}(x), \psi_{3}(x)$ are three lowest eigen states that are orthornomal and E_{1}, E_{2}, E_{3} are corresponding eigen energies. What is the probability to find the particle in $\psi_{3}(x)$?

Prob. 2(2)

An electron with mass M is in a one-dimensional potential well with thickness L and two infinitely large potential barriers. The potential energy insider the well is zero. If the wave function in the well is given as $\psi(x)=A\left(\frac{x}{L}-\frac{x^{2}}{L^{2}}\right)$, where A is the normalization constant, what is the expectation value of the energy of the electron?

Prob. 3(1)

When $\psi(x)=\sum_{n} a_{n} \psi_{n}(x)$ where $\psi_{n}(x)$ is the orthonormal basis with the corresponding eigen energy E_{n}, determine $\hat{H}^{4} \psi(x)$, where \hat{H} is the Hamiltonian operator.

