Quiz #11 (Measurement and Expectation Value) Oct. 26, 2016 Quantum Mechanics Prof. Woo-Young Choi Dept. of Electrical and Electronic Engineering Yonsei University

Prob.1(1)

A particle with mass M is in the following superposition state in a onedimensional potential well with thickness L and two infinitely large potential barriers, $\psi(x,t) = \sqrt{\frac{1}{2}}\psi_1(x)\exp(-i\frac{E_1}{\hbar}t) + \sqrt{\frac{1}{3}}\psi_2(x)\exp(-i\frac{E_2}{\hbar}t) + \sqrt{\frac{1}{6}}\psi_3(x)\exp(-i\frac{E_3}{\hbar}t)$, where $\psi_1(x)$, $\psi_2(x)$, $\psi_3(x)$ are three lowest eigen states that are orthornomal and E_1 , E_2 , E_3 are corresponding eigen energies. What is the probability to find the particle in $\psi_3(x)$?

Prob. 2(2)

An electron with mass M is in a one-dimensional potential well with thickness L and two infinitely large potential barriers. The potential energy insider the well is

zero. If the wave function in the well is given as $\psi(x) = A\left(\frac{x}{L} - \frac{x^2}{L^2}\right)$, where A is

the normalization constant, what is the expectation value of the energy of the electron?

Prob. 3(1)

When $\psi(x) = \sum_{n} a_{n} \psi_{n}(x)$ where $\psi_{n}(x)$ is the orthonormal basis with the corresponding eigen energy E_{n} , determine $\hat{H}^{4}\psi(x)$, where \hat{H} is the Hamiltonian operator.