Quiz \#16 (Unitary and Hermitian operators)

Nov. 16, 2016
Quantum Mechanics
Prof. Woo-Young Choi
Dept. of Electrical and Electronic Engineering
Yonsei University

Prob.1(2)

Determine the unitary operator that transforms any two-dimension vector represented by orthonormal bases \bar{x}, \bar{y} into a vector represented by another set of orthonormal bases $\bar{x}^{\prime}, \bar{y}^{\prime}$, which are 45 deg rotated from \bar{x}, \bar{y}.

Prob.2(2)

An operator is given as $\hat{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ in the two-dimension space represented by \bar{x}, \bar{y}.
What becomes to this operator in the two-dimension spaced represented by $\bar{x}^{\prime}, \bar{y}^{\prime}$?

Prob. 3(2)

Prove that a Hermitian operator has real eigen values.

