Quiz \#18 (Angular Momentum)

Nov. 23, 2016
Quantum Mechanics
Prof. Woo-Young Choi
Dept. of Electrical and Electronic Engineering
Yonsei University

Prob.1(2)
Assume the moon has mass M and is rotating the earth in a circle having radius R on the $x-y$ plane with speed V. Determine the angular momentum of the moon.

Prob.2(2)

Determine $\left[\hat{L}_{x}, \hat{L}_{x}+\hat{L}_{y}\right]$, where \hat{L}_{x} and \hat{L}_{y} is x-component and y-component angular momentum operator, respectively. Your answer should be an expression involving $x, y, z, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$ and fundamental constants.

Prob.3(2)

Show that for any quantum mechanical particle its z-component of the angular momentum in the spherical coordinate has to be integer multiples of \hbar.

